
MySQL
Concurrency

Locking and Transactions for MySQL
Developers and DBAs
—
Jesper Wisborg Krogh

MySQL Concurrency
Locking and Transactions

for MySQL Developers
and DBAs

Jesper Wisborg Krogh

MySQL Concurrency: Locking and Transactions for MySQL Developers and DBAs

ISBN-13 (pbk): 978-1-4842-6651-9 ISBN-13 (electronic): 978-1-4842-6652-6
https://doi.org/10.1007/978-1-4842-6652-6

Copyright © 2021 by Jesper Wisborg Krogh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza,
Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484266519. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Jesper Wisborg Krogh
Hornsby, NSW, Australia

https://doi.org/10.1007/978-1-4842-6652-6

To my wife Ann-Margrete – Thanks for the patience and support.

v

Table of Contents

Chapter 1: Introduction��� 1

Why Are Locks Needed? ��� 1

Lock Levels ��� 2

Locks and Transactions ��� 3

Examples��� 3

Prerequisites for the concurrency_book�generate Module ��� 4

Installing the concurrency_book�generate Module ��� 5

Getting Information �� 7

Loading Test Data �� 7

Executing a Workload �� 9

Test Data: The world Schema �� 15

Schema�� 15

Installation ��� 16

Test Data: The sakila Schema ��� 20

Schema�� 20

Installation ��� 26

Test Data: The employees Schema ��� 27

Schema�� 27

Installation ��� 29

Summary��� 30

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

vi

Chapter 2: Monitoring Locks and Mutexes ��� 31

The Performance Schema ��� 31

Metadata and Table Locks ��� 32

Data Locks ��� 36

Synchronization Waits ��� 40

Statement and Error Tables ��� 43

The sys Schema �� 48

Status Counters and InnoDB Metrics �� 48

Querying the Data �� 49

Configuring the InnoDB Metrics ��� 51

InnoDB Lock Monitor and Deadlock Logging �� 54

InnoDB Mutexes and Semaphores �� 61

Summary��� 65

Chapter 3: Monitoring InnoDB Transactions ��� 67

Information Schema INNODB_TRX �� 67

InnoDB Monitor ��� 75

INNODB_METRICS and sys�metrics ��� 77

Summary��� 81

Chapter 4: Transactions in the Performance Schema��� 83

Transaction Events and Their Statements ��� 83

Transaction Summary Tables �� 94

Summary��� 96

Chapter 5: Lock Access Levels ��� 97

Shared Locks �� 97

Exclusive Locks ��� 100

Intention Locks �� 102

Lock Compatibility��� 102

Summary��� 103

Table of ConTenTs

vii

Chapter 6: High-Level Lock Types ��� 105

User-Level Locks ��� 105

Flush Locks ��� 109

Metadata Locks ��� 111

Explicit Table Locks ��� 115

Implicit Table Locks ��� 116

Backup Locks �� 118

Log Locks �� 121

Summary��� 122

Chapter 7: InnoDB Locks �� 123

Record Locks and Next-Key Locks �� 123

Gap Locks ��� 126

Predicate and Page Locks ��� 128

Insert Intention Locks ��� 130

Auto-Increment Locks ��� 132

Mutexes and RW-Lock Semaphores ��� 133

Summary��� 139

Chapter 8: Working with Lock Conflicts ��� 141

Contention-Aware Transaction Scheduling (CATS) �� 142

InnoDB Data Lock Compatibility �� 143

Metadata and Backup Lock Wait Timeouts ��� 143

InnoDB Lock Wait Timeouts ��� 145

Deadlocks ��� 146

InnoDB Mutex and Semaphore Waits �� 153

Summary��� 155

Chapter 9: Reducing Locking Issues �� 157

Transaction Size and Age �� 157

Indexes �� 158

Record Access order ��� 162

Table of ConTenTs

viii

Transaction Isolation Levels �� 162

Configuration��� 166

Resource Partitioning �� 166

Disabling the InnoDB Adaptive Hash Index �� 167

Reducing Priority of Metadata Write Locks ��� 168

Preemptive Locking �� 169

Summary��� 170

Chapter 10: Indexes and Foreign Keys ��� 171

Indexes �� 171

Primary vs� Secondary Indexes ��� 172

Ascending vs� Descending Indexes ��� 176

Unique Indexes �� 180

Foreign Keys ��� 184

DML Statement �� 185

DDL Statement �� 189

Summary��� 190

Chapter 11: Transactions �� 193

Transactions and ACID �� 193

Atomicity ��� 193

Consistency ��� 194

Isolation ��� 195

Durability ��� 195

Impact of Transactions �� 196

Locks ��� 196

Undo Logs �� 198

Group Commit ��� 200

Summary��� 201

Table of ConTenTs

ix

Chapter 12: Transaction Isolation Levels �� 203

Serializable ��� 204

Repeatable Read ��� 207

Read Committed ��� 213

Read Uncommitted ��� 217

Summary��� 218

Chapter 13: Case Study: Flush Locks ��� 219

The Symptoms �� 220

The Cause ��� 221

The Setup �� 222

The Investigation ��� 223

The Solution �� 228

The Prevention �� 229

Summary��� 230

Chapter 14: Case Study: Metadata and Schema Locks �� 231

The Symptoms �� 231

The Cause ��� 232

The Setup �� 232

The Investigation ��� 233

The Solution �� 244

The Prevention �� 245

Summary��� 246

Chapter 15: Case Study: Record-Level Locks ��� 247

The Symptoms �� 247

The Cause ��� 252

The Setup �� 252

The Investigation ��� 253

The Solution �� 256

The Prevention �� 257

Summary��� 257

Table of ConTenTs

x

Chapter 16: Case Study: Deadlocks �� 259

The Symptoms �� 259

The Cause ��� 260

The Setup �� 261

The Investigation ��� 263

The Solution �� 274

The Prevention �� 274

Summary��� 275

Chapter 17: Case Study: Foreign Keys �� 277

The Setup �� 277

The Discussion �� 281

Errors and High-Level Monitoring�� 281

Lock Metrics �� 283

Metadata Lock Contention ��� 285

InnoDB Lock Contention �� 292

The Solution and Prevention ��� 294

Summary��� 295

Chapter 18: Case Study: Semaphores��� 297

The Symptoms �� 297

The Cause ��� 298

The Setup �� 299

The Investigation ��� 303

The InnoDB RW-Lock Metrics �� 303

InnoDB Monitor and Mutex Monitor ��� 305

Determining the Workload ��� 309

The Solution and Prevention ��� 312

Disabling the Adaptive Hash Index �� 312

Increase the Number of Hash Index Parts ��� 317

Other Solutions �� 318

Summary��� 318

Table of ConTenTs

xi

 Appendix A: References �� 321

 Tables and Views �� 321

 Lock Information�� 322

 Metadata Object Types �� 323

 Metadata Lock Types ��� 324

 Transaction Information ��� 325

 Statement Information��� 326

 Wait Information �� 329

 Table I/O Information ��� 330

 File I/O Information �� 332

 Error Information ��� 333

 Status Variables and InnoDB Metrics �� 334

 InnoDB Monitor Sections��� 334

 Appendix B: MySQL Shell Module ��� 337

 Prerequisites ��� 337

 Installation �� 338

 The help() and show() Methods ��� 339

 Loading Test Data �� 343

 Executing a Workload �� 345

 Module Structure �� 352

 Library Files ��� 353

 Workloads Directory �� 360

 Defining Workloads ��� 360

 Global Keys �� 362

 Queries and Completions �� 364

 Investigations �� 366

 Summary��� 368

 Index ��� 369

Table of ConTenTs

xiii

About the Author

Jesper Wisborg Krogh has worked with MySQL databases

since 2006 both as a SQL developer and a database

administrator and for more than 8 years as part of the Oracle

MySQL Support team. He currently works as a database

reliability engineer for Okta. He has spoken at MySQL

Connect, Oracle OpenWorld, and Oracle Developer Live on

several occasions. In addition to his books, Jesper regularly

blogs on MySQL topics and has authored approximately

800 documents in the Oracle Knowledge Base. He has

contributed to the sys schema and four Oracle Certified

Professional (OCP) exams for MySQL 5.6–8. Jesper holds

a PhD in computational chemistry; lives in Sydney,

Australia; and enjoys spending time outdoors walking, traveling, and reading. His areas

of expertise include MySQL Cluster, MySQL Enterprise Backup (MEB), performance

tuning, and the performance and sys schemas.

xv

About the Technical Reviewer

Charles Bell conducts research in emerging technologies.

He is a member of the Oracle MySQL Development

team and is a senior software developer for the MySQL

Enterprise Backup team. He lives in a small town in rural

Virginia with his loving wife. He received his Doctor of

Philosophy in Engineering from Virginia Commonwealth

University in 2005.

Charles is an expert in the database field and has

extensive knowledge and experience in software development and systems engineering.

His research interests include 3D printers, microcontrollers, three-dimensional

printing, database systems, software engineering, high-availability systems, cloud, and

sensor networks. He spends his limited free time as a practicing Maker, focusing on

microcontroller projects and refinement of three-dimensional printers.

xvii

Acknowledgments

I would first of all like to say thank you to all of those from the Apress team that have

made this book possible. In particular, I would like to shout out Jonathan Gennick who

came up with the idea, Jill Balzano who coordinated the work, Laura Berendson for her

work behind the scenes, and Creapzylene Roma for catching my linguistic slipups.

The knowledge shared in this book has not materialized out of nothing. Thanks to

Charles Bell for providing – as always – a thorough review with constructive feedback

and suggestions for improvements. Jakub Lopuszanski has been helpful with details on

InnoDB locking. I would also like to thank all my colleagues over the years as they have

all been part of my journey learning how MySQL works through mentorship, teaching

me, asking me good questions, and general discussions. A special thank you to Edwin

Desouza and Frédéric Descamps (better known as Lefred) for their assistance.

Last but not least, thanks to my wife Ann-Margrete for her patience and support

while I wrote this book. Without you, it would not have been possible to write this book.

xix

Introduction

When working with databases, locks and transactions are some of the most difficult and

misunderstood topics. This book aims at improving your understanding of these two

concepts, how they work, how you can investigate them, and how you can improve your

workload, so it works the best with them. This is achieved through a combination of

discussing monitoring, the lock and transaction theory, and a series of case studies.

MySQL is famous for its support for storage engines. However, this book exclusively

covers the InnoDB storage engine, and only MySQL 8 is considered. That said, most of

the discussion also applies to older versions of MySQL, and in general, it is mentioned

when a feature is new in MySQL 8 or that MySQL 8 has a different behavior compared to

older versions.

 Book Audience
The book has been written for developers and database administrators who have

experience working with MySQL and want to expand their knowledge of how locks and

transactions work in the realm of MySQL concurrency.

 Examples and the Book’s GitHub Repository
I have tried to add as many examples and outputs from examples as possible. Some of

the examples are quite short, some are quite long. In either case, I hope you are able to

follow them and reproduce the effect or result demonstrated. At the same time, please do

bear in mind that by nature there is often randomness involved, and the exact outcome

of the examples may depend on how the tables and data have been used prior to the

example. In other words, you may get different results even if you did everything right.

This particularly applies to numbers that relate to lock ids, memory locations, mutexes/

semaphores, timings, and the like.

xx

Examples that are long or produce outputs that are either long or wide have been

added to this book’s GitHub repository. This includes some of the figures that may be

hard to read with the image size that the page format allows.

Note The link to the repository can be found from the book’s home page at www.
apress.com/gp/book/9781484266519. It can also be found directly at www.
github.com/Apress/mysql- concurrency.

To make it easier to reproduce the examples and to provide example queries that

can be used to examine the issue the test demonstrates, a module written in Python

for use in MySQL Shell is also included in the book’s GitHub repository. The basic

installation and usage instructions are covered in Chapter 1 and the full documentation

in Appendix B.

The GitHub repository will also be the home of the errata for the book once that

is created. I will use the errata not only to communicate errors in the book but also to

provide updates when bug fixes and new features in MySQL 8 cause changes to book

content. If necessary, I will also update the examples in the repository to reflect the

behavior in the newer releases. For these reasons, I recommend that you keep an eye on

the repository.

 Book Structure
I have attempted to keep each chapter relatively self-contained with the aim that you

can use the book as a reference book. The drawback of this choice is that there is some

duplication of information from time to time. This is particularly evident in the case

studies that repeat some of the information discussed in earlier chapters. This was a

deliberate choice, and I hope it helps you to reduce the amount of page flipping to find

the information you need.

The book is divided into 18 chapters and two appendixes. Chapter 1 provides an

introduction, Chapters 2–4 cover monitoring of locks and transactions, Chapters 5–10

discuss locks, Chapters 11–12 contain information about transactions, and finally

Chapters 13–18 go through six case studies. The appendixes contain references for

monitoring locks and transactions and for the MySQL Shell module provided with the

book.

InTroduCTIon

http://www.apress.com/gp/book/9781484266519
http://www.apress.com/gp/book/9781484266519
http://www.github.com/Apress/mysql-concurrency
http://www.github.com/Apress/mysql-concurrency

xxi

• Chapter 1, “Introduction”: This introductory chapter covers some

high-level concepts as well as introduces the MySQL Shell module for

reproducing the example and the test data used in this book.

• Chapter 2, “Monitoring Locks”: This chapter covers how you can

monitor locks using the Performance Schema, the sys schema, status

counters, and InnoDB metrics. There is also information on how to

use the InnoDB lock monitor and the deadlock information in the

InnoDB monitor and how to obtain information about mutex and

semaphore contention.

• Chapter 3, “Monitoring InnoDB Transactions”: This chapter

primarily shows how you can use the information_schema.INNODB_

TRX view to investigate InnoDB transaction. The transaction list in

the InnoDB monitor and transaction-related InnoDB metrics are also

covered.

• Chapter 4, “Transactions in the Performance Schema”: This

chapter continues where the previous stopped by going through the

transaction information in the Performance Schema and how you

can find the statements for a transaction.

• Chapter 5, “Lock Access Levels”: This chapter goes through shared,

exclusive, and intention locks as well as shows which of these are

compatible with each other.

• Chapter 6, “High-Level Lock Types”: This chapter covers the locks

that work at a higher level than records. These are mainly locks

handled outside the scope of the storage engines and include user-

level locks, metadata locks, flush locks, and table-level locks. The new

MySQL 8 backup and log locks are also included.

• Chapter 7, “InnoDB Locks”: This chapter goes to the record locks

used by InnoDB. These include plain record locks, gab locks,

predicate locks, insert intention locks, auto-increment locks, as well

as mutexes and rw-lock semaphores.

• Chapter 8, “Working with Lock Conflicts”: This chapter explains

what happens when lock conflicts occur from a discussion of the

contention-aware transaction scheduling (CATS) used internally to

InTroduCTIon

xxii

prioritize locks and a discussion of lock compatibility to lock wait

timeouts and deadlocks.

• Chapter 9, “Reduce Locking Issues”: This chapter covers how you

can reduce lock contention and the effects of the contention in your

system. Methods include reducing the transaction size and age, using

indexes, accessing records in the same order for concurrent tasks,

changing the transaction isolation level, and more.

• Chapter 10, “Indexes and Foreign Keys”: This chapter considers

the effect of indexes and foreign keys on locking in detail. Do unique

indexes require less locks than non-unique indexes? Do foreign keys

cause more locks? The answer is yes, and this chapter explains why

that is the case and gives examples of the differences.

• Chapter 11, “Transactions”: This chapter discusses what

transactions are and how they help handle concurrent workloads.

The chapter also covers the impact of transactions and how the group

commit feature helps reduce the impact of persisting committed

transactions.

• Chapter 12, “Transaction Isolation Levels”: This chapter goes

through the four transaction isolation levels supported by InnoDB

with a discussion on how each level affects locking and data

consistency.

• Chapter 13, “Case Study: Flush Locks”: This chapter sets the

database up, so there is flush lock contention, and then goes through

analyzing the issue and providing a solution and discusses how to

prevent the issue.

• Chapter 14, “Case Study: Metadata and Schema Locks”: This

chapter takes on another common lock issue by studying a situation

with metadata locks.

• Chapter 15, “Case Study: Record-Level Locks”: This chapter

performs an investigation into InnoDB record-level locks and

discusses how to resolve the lock issue and reduce the chance of

encountering them.

InTroduCTIon

xxiii

• Chapter 16, “Case Study: Deadlocks”: This chapter goes through

an investigation of a deadlock with details of analyzing the deadlock

information from the InnoDB monitor output.

• Chapter 17, “Case Study: Foreign Keys”: This chapter covers an

advanced lock scenario caused by foreign keys, involving both

metadata and InnoDB record locks.

• Chapter 18, “Case Study: Semaphores”: This chapter sets up a test

case triggering semaphore contention and performs an investigation

of the issue.

• Appendix A, “References”: This appendix provides an overview

of the resources for finding information related to the topics

discussed in this book. The resources primarily consist of tables in

the Performance Schema and views in the sys schema including

the possible values of the OBJECT_TYPE and LOCK_TYPE columns of

the performance_schema.metadata_locks table. Some Information

Schema resources are also included, and there is a list of sections in

the output from the InnoDB monitor.

• Appendix B, “MySQL Shell Script Reproducing Lock Scenarios”:
This appendix is the reference for the Python module included with

the book. This includes a discussion of how to install and use the

module as well as how the code is organized in case you want to

extend it with your own workloads.

InTroduCTIon

1
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_1

CHAPTER 1

Introduction
Concurrency and locking are some of the most complex topics when it comes to

databases. A query that usually executes fast and without problems may suddenly take

much longer or fail with an error when the conditions are “just right,” so locking or

contention becomes a problem. You may ask yourself why locks are around when they

can cause such problems. This and the next 11 chapters will try to explain that as well

as how you best deal with them. The last six chapters of the book go through six case

studies putting the information together in realistic scenarios together with analysis and

how to avoid or reduce the issue.

In this chapter, you will first learn why locks are important despite the problems

they can cause. Then the relationship with transactions will be explained. The rest of the

chapter introduces how examples are used in this book as well as the world, sakila, and

employees databases which are used throughout this book for the examples.

 Why Are Locks Needed?
It can seem like a perfect world where locking in databases is not needed. The price will

however be so high that only few use cases can use that database, and it is impossible to

avoid locks for a general-purpose database such as MySQL. If you do not have locking,

you cannot have any concurrency. Imagine that only one connection is ever allowed

to the database (you can argue that it itself is a lock and thus the system is not lock-free

anyway) – that is not very useful for most applications.

Note Often what is called a lock in MySQL is really a lock request which can be
in a granted or pending state.

https://doi.org/10.1007/978-1-4842-6652-6_1#DOI

2

When you have several connections executing queries concurrently, you need some

way to ensure that the connections do not step on each other’s toes. That is where locks

enter the picture. You can think of locks in the same way as traffic signals in road traffic

(Figure 1-1) that regulate access to the resources to avoid accidents. In a road intersection,

it is necessary to ensure that two cars do not cross each other’s path and collide.

In a database, it is necessary to ensure two queries’ access to the data does not

conflict. As there are different levels of controlling the access to an intersection –

yielding, stop signs, and traffic lights – there are different lock types in a database.

 Lock Levels
Locks in MySQL come in several flavors acting at different levels in MySQL ranging from

user-level locks to record locks. At the highest level are the user-level locks which can

protect whole code paths in the application and any object inside the database. In the

Figure 1-1. Locks in databases are similar to traffic lights

Chapter 1 IntrOduCtIOn

3

middle there are locks that operate on the database objects. These include metadata

locks that protect the metadata of the tables as well as table locks that protect all data in

the table. Common for the user-level and table-level locks is that they are implemented

at the SQL layer of the database. The high-level locks are discussed in Chapter 6.

At the lowest level are the locks implemented by the storage engines. By nature, these

locks depend on the storage engine you use. As InnoDB is by far the most used storage

engine in MySQL (and the default), this book covers the InnoDB-specific locks. InnoDB

includes locks on the records, which are the easiest to understand, as well as more

difficult concepts such as gap locks, next key locks, predicate locks, and insert intention

locks. Additionally, there are mutexes and semaphores (this also happens at the level

of the SQL layer). The InnoDB-specific locks and mutexes/semaphores are covered in

Chapter 7.

 Locks and Transactions
It can seem odd at first to combine the topics of locks and transactions into one book

about concurrency. However, they are strongly related as you will see several examples

of in this book. Some locks are held for the duration of a transaction, so it is important to

understand how transactions work and how to monitor them.

The concept of transaction isolation level also plays an important role when working

with locks. The isolation level influences both which locks are taken and how long a time

they are held.

Chapters 3 and 4 cover how you can monitor transactions, and Chapters 11 and 12

cover how transactions work, their impact, and the transaction isolation levels.

 Examples
Throughout the book there are examples that help illustrate the topic being discussed

or set up a situation that you can investigate. Except for Chapters 17 and 18, all

statements required to reproduce the test are listed. In general, you will need more

than one connection for the examples, so the prompts for the queries have been set

to indicate which connection to use for which queries when that is important. For

example, Connection 1> means that the query should be executed by the first of your

connections.

Chapter 1 IntrOduCtIOn

4

All the examples in this book have been executed in MySQL Shell. For brevity the

prompt in the examples is mysql> except when the connection is important or when

the language mode is not SQL. The examples will however also work from the old mysql

command-line client.

Tip If you are unfamiliar with MySQL Shell, then it is a second-generation MySQL
command-line client with support for both SQL, python, and JavaScript. It also
comes with several built-in utilities including tools for managing MySQL InnodB
Cluster and traditional replication topologies. For an introduction to MySQL Shell,
see the user guide at https://dev.mysql.com/doc/mysql- shell/en/ or
the book Introducing MySQL Shell (apress) by Charles Bell (www.apress.com/
gp/book/9781484250822).

Additionally, this book comes with a Python module – concurrency_book.

generate – that can be imported into MySQL Shell and used to reproduce all but the

simplest examples. The rest of this section describes how to use the MySQL Shell

module. The content here is an excerpt of Appendix B which contains a longer reference

for the module including how to implement your own examples.

Note By nature, some of the data in the examples will be different for each
execution. this is particularly the case for ids and memory addresses and similar.
So, do not expect to get identical results for all details when you try to reproduce
the examples.

 Prerequisites for the concurrency_book.generate Module
The most important requirement to use the MySQL Shell module provided with this

book is that you are using MySQL Shell 8.0.20 or later. This is a strict requirement as the

module primarily uses the shell.open_session() method to create the connections

needed for the test cases. This method was only introduced in release 8.0.20. The

advantage of shell.open_session() over the mysql.get_classic_session() and

mysqlx.get_session() is that open_session() works transparently with both the classic

MySQL protocol and the new X protocol.

Chapter 1 IntrOduCtIOn

https://dev.mysql.com/doc/mysql-shell/en/
http://www.apress.com/gp/book/9781484250822
http://www.apress.com/gp/book/9781484250822

5

If you for some reason are stuck with an older version of MySQL Shell, you can

update the test cases to include the protocol setting (see Defining Workloads in

Appendix B) to explicitly specify which protocol to use.

It is also required that a connection already exists from MySQL Shell to MySQL

Server as the module uses the URI of that connection when creating the additional

connections required for the example.

The examples have been tested with MySQL Server 8.0.21; however, most of the

examples will work with older releases and some even with MySQL 5.7. That said, it is

recommended to use MySQL Server 8.0.21 or later.

 Installing the concurrency_book.generate Module
To use the module, you need to download the files in the concurrency_book directory

from this book’s GitHub repository (the link can be found on the book’s home page at

www.apress.com/gp/book/9781484266519). The easiest is to clone the repository or to

download the ZIP file with all the files using the menu shown in Figure 1-2.

Click on the clipboard icon to copy the URL used to clone the repository using

the Git software of your system or use the Download ZIP link to download a ZIP file

of the repository. You are free to choose any path as the location of the files as long

as the structure below the concurrency_book directory is kept. For this discussion,

Figure 1-2. The GitHub menu for cloning or downloading the repository

Chapter 1 IntrOduCtIOn

http://www.apress.com/gp/book/9781484266519

6

it is assumed you have cloned the repository or unzipped the file to C:\Book\mysql-

concurrency, so the generate.py file is in the directory C:\Book\mysql-concurrency\

concurrency_book\.

To be able to import the module in MySQL Shell, open or create the mysqlshrc.py

file. MySQL Shell searches in four places for the file. On Microsoft Windows, the paths

are in the order they are searched:

 1. %PROGRAMDATA%\MySQL\mysqlsh\

 2. %MYSQLSH_HOME%\shared\mysqlsh\

 3. <mysqlsh binary path>\

 4. %APPDATA%\MySQL\mysqlsh\

On Linux and Unix

 1. /etc/mysql/mysqlsh/

 2. $MYSQLSH_HOME/shared/mysqlsh/

 3. <mysqlsh binary path>/

 4. $HOME/.mysqlsh/

All four paths are always searched, and if the file is found in multiple locations, each

file will be executed. This means that the last found file takes precedence if the files affect

the same variables. If you make changes meant for you personally, the best place to

make the changes is in the fourth location. The path in step 4 can be overridden with the

MYSQLSH_USER_CONFIG_HOME environment variable.

You need to ensure the mysqlshrc.py file adds the directory with the module to

the Python search path, and optionally you can add an import statement to make the

module available when you start MySQL Shell. An example of the mysqlshrc.py file is

import sys

sys.path.append('C:\\Book\\mysql-concurrency')

import concurrency_book.generate

The double backslashes are for Windows; on Linux and Unix, you do not need to

escape the slashes that separate the path elements. If you do not include the import in

the mysqlshrc.py file, you will need to execute it in MySQL Shell before you can use the

module.

Chapter 1 IntrOduCtIOn

7

 Getting Information
The module includes two methods that return information on how to use the module.

One is the help()method which provides information on how to use the module:

mysql-py> concurrency_book.generate.help()

There is also the show() method which lists the workloads that the run() method

can execute and the schemas that the load() method can load:

mysql-py> concurrency_book.generate.show()

The workloads are named after the code listings in the book, for example, the

workload named “Listing 6-1” implements the example in Listing 6-1.

Before you can start executing the workloads, you need to load some test data which

the module can do for you as well.

 Loading Test Data
The concurrency_book.generate module supports loading the employees, sakila,

and world example databases into your MySQL instance. For the employees database,

you can optionally choose a version with partitions. The world database is the most

important for this book followed by the sakila database. The employees database is only

used for the case study in Chapter 18. Each of the three schemas is described in more

detail later in this chapter.

Note If the schema exists, it will be dropped as part of the load job. this
effectively means that load() resets the schema.

You load a schema with the load() method which optionally takes the name of

the schema you want to load. If you do not provide a schema name, then you will be

prompted. Listing 1-1 shows an example of loading the world schema.

Chapter 1 IntrOduCtIOn

8

Listing 1-1. Loading the world schema

mysql-py> concurrency_book.generate.load()

Available Schema load jobs:

===========================

 # Name Description

 1 employees The employee database

 2 employees partitioned The employee database with partitions

 3 sakila The sakila database

 4 world The world database

Choose Schema load job (# or name - empty to exit): 4

2020-07-20 21:27:15.221340 0 [INFO] Downloading https://downloads.

mysql.com/docs/world.sql.zip to C:\Users\myuser\AppData\Roaming\mysql_

concurrency_book\sample_data\world.sql.zip

2020-07-20 21:27:18.159554 0 [INFO] Processing statements in world.sql

2020-07-20 21:27:27.045219 0 [INFO] Load of the world schema completed

Available Schema load jobs:

===========================

 # Name Description

 1 employees The employee database

 2 employees partitioned The employee database with partitions

 3 sakila The sakila database

 4 world The world database

Choose Schema load job (# or name - empty to exit):

The load() method downloads the file with the schema definition, if it does not

already have it. The downloaded file is stored in %APPDATA\mysql_concurrency_book\

sample_data\ on Microsoft Windows and in ${HOME}/.mysql_concurrency_book/

sample_data/ on other platforms. If you want the file re-downloaded, delete it from that

directory.

Chapter 1 IntrOduCtIOn

9

Tip as only relatively low-level network routines are available in MySQL Shell’s
python, downloading the employees database may fail if you have a slow or
unstable connection. One option – other than installing the schema manually –
is to download https://github.com/datacharmer/test_db/archive/
master.zip and save it in the sample_data directory. after that, the load()
method will pick it up and not attempt to download it again.

If you only want to load a single schema, you can specify the name as an argument

to load(). This can be particularly useful when initiating a schema load as a command

given directly on the command line when invoking MySQL Shell, for example

shell> mysqlsh --user=myuser --py -e "concurrency_book.generate.

load('world')"

When you are done loading the schemas you need, you can reply with an empty

answer to exit. You are now ready to execute the workloads.

Note If the load process crashes complaining about the file, for example, that it
is not a ZIp file, then it suggests the file is corrupted or incomplete. In that case,
delete the file, so it is re-downloaded, or try to download the file manually using
your browser.

 Executing a Workload
You execute a workload with the run() method. If you specify the name of the known

workload, then that workload will be executed immediately. Otherwise, the available

workloads are listed, and you are prompted for the workload. You can in this case specify

the workload either by the number (e.g., 15 for Listing 6-1) or by the name. When using

the name, the number of spaces between Listing and the listing number does not

matter as long as there is at least one space. When you choose the workload using the

prompt, you can choose another workload once the previous has completed.

Chapter 1 IntrOduCtIOn

https://github.com/datacharmer/test_db/archive/master.zip
https://github.com/datacharmer/test_db/archive/master.zip

10

After the workload has completed, for several of the workloads, you will be given a

list of suggestions for investigations you can do. This can, for example, be to query the

locks held by the connections used in the example. The investigations are meant as

inspiration, and you are encouraged to explore the workload using your own queries.

Some of the investigations are also used in the discussion of the example. Listing 1-2

shows an example of executing a workload using the prompt.

Listing 1-2. Executing a workload using the prompt

mysql-py> concurrency_book.generate.run()

Available workloads:

====================

 # Name Description

 1 Listing 2-1 Example use of the metadata_locks table

 2 Listing 2-2 Example of using the table_handles table

 3 Listing 2-3 Using the data_locks table

...

14 Listing 5-2 Example of obtaining exclusive locks

15 Listing 6-1 A deadlock for user-level locks

...

Choose workload (# or name - empty to exit): 15

Password for connections: ********

2020-07-20 20:50:41.666488 0 [INFO] Starting the workload Listing 6-1

**

* *

* Listing 6-1. A deadlock for user-level locks *

* *

**

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 105 249 6

-- 2 106 250 6

Chapter 1 IntrOduCtIOn

11

-- Connection 1

Connection 1> SELECT GET_LOCK('my_lock_1', -1);

+---------------------------+

| GET_LOCK('my_lock_1', -1) |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.0003 sec)

-- Connection 2

Connection 2> SELECT GET_LOCK('my_lock_2', -1);

+---------------------------+

| GET_LOCK('my_lock_2', -1) |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.0003 sec)

Connection 2> SELECT GET_LOCK('my_lock_1', -1);

-- Connection 1

Connection 1> SELECT GET_LOCK('my_lock_2', -1);

ERROR: 3058: Deadlock found when trying to get user-level lock; try rolling

back transaction/releasing locks and restarting lock acquisition.

Available investigations:

=========================

 # Query

--

 1 SELECT *

 FROM performance_schema.metadata_locks

 WHERE object_type = 'USER LEVEL LOCK'

 AND owner_thread_id IN (249, 250)

 2 SELECT thread_id, event_id, sql_text,

 mysql_errno, returned_sqlstate, message_text,

 errors, warnings

Chapter 1 IntrOduCtIOn

12

 FROM performance_schema.events_statements_history

 WHERE thread_id = 249 AND event_id > 6

 ORDER BY event_id

...

Choose investigation (# - empty to exit): 2

-- Investigation #2

-- Connection 3

Connection 3> SELECT thread_id, event_id, sql_text,

 mysql_errno, returned_sqlstate, message_text,

 errors, warnings

 FROM performance_schema.events_statements_history

 WHERE thread_id = 249 AND event_id > 6

 ORDER BY event_id\G

*************************** 1. row ***************************

 thread_id: 249

 event_id: 7

 sql_text: SELECT GET_LOCK('my_lock_1', -1)

 mysql_errno: 0

returned_sqlstate: NULL

 message_text: NULL

 errors: 0

 warnings: 0

*************************** 2. row ***************************

 thread_id: 249

 event_id: 8

 sql_text: SELECT GET_LOCK('my_lock_2', -1)

 mysql_errno: 3058

returned_sqlstate: HY000

 message_text: Deadlock found when trying to get user-level lock; try

rolling back transaction/releasing locks and restarting lock acquisition.

 errors: 1

 warnings: 0

Chapter 1 IntrOduCtIOn

13

*************************** 3. row ***************************

 thread_id: 249

 event_id: 9

 sql_text: SHOW WARNINGS

 mysql_errno: 0

returned_sqlstate: NULL

 message_text: NULL

 errors: 0

 warnings: 0

3 rows in set (0.0009 sec)

Available investigations:

=========================

 # Query

--

...

Choose investigation (# - empty to exit):

2020-07-20 20:50:46.749971 0 [INFO] Completing the workload Listing 6-1

-- Connection 1

Connection 1> SELECT RELEASE_ALL_LOCKS();

+---------------------+

| RELEASE_ALL_LOCKS() |

+---------------------+

| 1 |

+---------------------+

1 row in set (0.0004 sec)

-- Connection 2

Connection 2> SELECT RELEASE_ALL_LOCKS();

+---------------------+

| RELEASE_ALL_LOCKS() |

+---------------------+

| 2 |

+---------------------+

1 row in set (0.0002 sec)

Chapter 1 IntrOduCtIOn

14

2020-07-20 20:50:46.749971 0 [INFO] Disconnecting for the workload

Listing 6-1

2020-07-20 20:50:46.749971 0 [INFO] Completed the workload Listing 6-1

Available workloads:

====================

 # Name Description

 1 Listing 2-1 Example use of the metadata_locks table

 2 Listing 2-2 Example of using the table_handles table

 3 Listing 2-3 Using the data_locks table

...

Choose workload (# or name - empty to exit):

mysql-py>

There are a few things to notice from this example. After choosing the workload, you

are asked for a password. This is the password for the MySQL account that you are using.

The other connection options are taken from the session.uri property in MySQL Shell,

but for security reasons, the password is not stored. If you execute multiple workloads in

one invocation of run(), you will only be prompted for the password once.

At the start of the execution of the workload, there is an overview of the process list

ids (as from SHOW PROCESSLIST), the (Performance Schema) thread ids, and the last

event ids before the start of the workload for each connection used for the workload:

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 105 249 6

-- 2 106 250 6

You can use these ids to execute your own investigative queries, and you can use

the overview to identify listings that have been implemented as a workload in

concurrency_book.generate.run().

At the end of executing the workload, this example has three queries you can execute

to investigate the issue the example demonstrates. You can execute one or more of these

by specifying the number of the query (one query at a time). In the code listings in this

Chapter 1 IntrOduCtIOn

15

book, the output of an investigation is preceded with a comment showing which of the

investigations has been executed, for example

-- Investigation #2

The number of investigations per workload varies from none to more than ten. The

listings in the book do not always include the result of all of the investigations as some

are left as inspiration and further examination of the issue.

Once you are done with the investigation, submit an empty answer to exit from the

workload. If you do not want to execute more workloads, submit an empty answer again

to exit the run() method.

If you only want to execute a single workload, you can specify the name as an

argument to run(). This can be particularly useful when executing a workload as a

command given directly on the command line when invoking MySQL Shell, for example

shell> mysqlsh --user=myuser --py -e "concurrency_book.generate.

run('Listing 6-1')"

The remainder of this chapter describes the three schemas used for the examples in

this book.

 Test Data: The world Schema
The world sample database is one of the most commonly used databases for simple

tests. It consists of three tables with a few hundred to a few thousand rows. This makes it

a small data set which means it can easily be used even on small test instances.

 Schema
The database consists of the city, country, and countrylanguage tables. The

relationship between the tables is shown in Figure 1-3.

Chapter 1 IntrOduCtIOn

16

The country table includes information about 239 countries and serves as the parent

table in foreign keys from the city and countrylanguage tables. There is a total of 4079

cities in the database and 984 combinations of country and language.

 Installation
You can download a file with the table definitions and data from https://dev.mysql.

com/doc/index- other.html. Oracle provides access to several example databases from

that page in the section Example Databases as shown in Figure 1-4.

Figure 1-3. The world database

Chapter 1 IntrOduCtIOn

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

17

The downloaded file consists of a single file named world.sql.gz or world.sql.zip

depending on whether you chose the Gzip or ZIP link. In either case, the downloaded

archive contains a single file world.sql. The installation of the data is straightforward as

all that is required is to execute the script.

You can source the world.sql from either MySQL Shell or the mysql command-line

client. From MySQL Shell you use the \source command to load the data:

MySQL [localhost ssl] SQL> \source world.sql

If you use the legacy mysql command-line client, use the SOURCE command instead:

mysql> SOURCE world.sql

In either case, add the path to the world.sql file if it is not located in the directory

where you started MySQL Shell or mysql.

If you prefer to use a GUI, then you can also load the world database using MySQL

Workbench. While connected to the MySQL instance you want to load the world schema

into, you click on File in the menu followed by Run SQL Script as shown in Figure 1-5.

Figure 1-4. The table with links to the example databases

Chapter 1 IntrOduCtIOn

18

This opens a file explorer where you can browse for the file. Navigate to the directory

where you have saved the uncompressed world.sql file and choose it. The result is the

dialog shown in Figure 1-6 where you can review the first part of the script and optionally

set the default schema name and character set.

Figure 1-5. Running an SQL script from MySQL Workbench

Chapter 1 IntrOduCtIOn

19

In the case of the world schema, both the schema name and character set are

included in the script, so there is no need to (and no effect of) setting those settings.

Click on Run to execute the script. A dialog shows the progress information while MySQL

executes the script. When the operation has completed, close the dialog. Optionally, you

can refresh the list of schemas in the sidebar by clicking on the two arrows chasing each

other as shown in Figure 1-7.

Figure 1-6. The dialog in MySQL Workbench for reviewing the script

Chapter 1 IntrOduCtIOn

20

While the world schema is great for much testing because of its simplicity and

small size, that also limits its usefulness, and sometimes a bit more complex database is

required.

 Test Data: The sakila Schema
The sakila database is a realistic database that contains a schema for a film rental

business with information about the films, inventory, stores, staff, and customers. It adds

a full text index, a spatial index, views, and stored programs to provide a more complete

example of using MySQL features. The database size is still very moderate, making it

suitable for small instances.

 Schema
The sakila database consists of 16 tables, seven views, three stored procedures, three

stored functions, and six triggers. The tables can be split into three groups, customer

data, business, and inventory. For brevity, not all columns are included in the diagrams,

and most indexes are not shown. Figure 1-8 shows a complete overview of the tables,

views, and stored routines.

Figure 1-7. Refresh the list of schemas by clicking on the two arrows

Chapter 1 IntrOduCtIOn

21

The tables with customer-related data (plus addresses for staff and stores) are in the

area in the top-left corner. The area in the lower left includes data related to the business,

and the area in the top right contains information about the films and inventory. The

lower right is used for the views and stored routines.

Tip You can view the entire diagram (though formatted differently) by opening the
sakila.mwb file included with the installation in MySQL Workbench. this is also a
good example of how you can use enhanced entity-relationship (eer) diagrams in
MySQL Workbench to document your schema.

As there is a relatively large number of objects, they will be split into five groups

(each of the table groups, views, and stored routines) when discussing the schema. The

first group is the customer-related data with the tables shown in Figure 1-9.

Figure 1-8. Overview of the sakila database

Chapter 1 IntrOduCtIOn

22

There are four tables with data related to the customers. The customer table is the

main table, and the address information is stored in the address, city, and country tables.

There are foreign keys between the customer and business groups with a foreign

key from the customer table to the store table in the business group. There are also four

foreign keys from tables in the business group to the address and customer tables. The

business group is shown in Figure 1-10.

Figure 1-9. The tables with customer data in the sakila database

Chapter 1 IntrOduCtIOn

23

The business tables contain information about the stores, staff, rentals, and

payments. The store and staff tables have foreign keys in both directions with staff

belonging to a store and a store having a manager that is part of the staff. Rentals and

payments are handled by a staff member and thus indirectly linked to a store, and

payments are for a rental.

The business group of tables is the one with the most relations to other groups. The

staff and store tables have foreign keys to the address table, and the rental and payment

tables reference the customer. Finally, the rental table has a foreign key to the inventory

table which is in the inventory group. The diagram for the inventory group is shown in

Figure 1-11.

Figure 1-10. The tables with business data in the sakila database

Chapter 1 IntrOduCtIOn

24

The main table in the inventory group is the film table which contains the metadata

about the films the stores offer. Additionally, there is the film_text table with the title

and description with a full text index.

Figure 1-11. The tables with inventory data in the sakila database

Chapter 1 IntrOduCtIOn

25

There is a many-to-many relationship between the film and the category and actor

tables. Finally, there is a foreign key from the inventory table to the store table in the

business group.

That covers all the tables in the sakila database, but there are also some views as

shown in Figure 1-12.

The views can be used like reports and can be divided into two categories. The

film_list, nicer_but_slower_film_list, and actor_info views are related to the films

stored in the database. The second category contains information related to the stores in

the sales_by_store, sales_by_film_category, staff_list, and customer_list views.

To complete the database, there are also the stored functions and procedures shown

in Figure 1-13.

Figure 1-12. The views in the sakila database

Figure 1-13. The stored routines in the sakila database

Chapter 1 IntrOduCtIOn

26

The film_in_stock() and film_not_in_stock() procedures return a result set

consisting of the inventory ids for a given film and store based on whether the film

is in stock or not. The total number of inventory entries found is returned as an out

parameter. The rewards_report() procedure generates a report based on minimum

spends for the last month.

The get_customer_balance() function returns the balance for a given customer

on a given date. The two remaining functions check the status of an inventory id with

inventory_held_by_customer() returning customer id of the customer currently

renting that item (and NULL if no customer is renting it), and if you want to check whether

a given inventory id is in stock, you can use the inventory_in_stock() function.

 Installation
You can download a file with the installation scripts to install the sakila schema from

https://dev.mysql.com/doc/index- other.html like for the world database.

The downloaded file expands into a directory with three files of which two create the

schema and data and the last file contains the ETL diagram in the format used by MySQL

Workbench.

Note the sakila database is also available with the download of the
employees database; however, this section and the examples later in the
book use the copy of the sakila database that is downloaded from MySQL’s
homepage.

The files are

• sakila-data.sql: The INSERT statements needed to populate the

tables as well as the trigger definitions.

• sakila-schema.sql: The schema definition statements.

• sakila.mwb: The MySQL Workbench ETL diagram. This is similar to

that shown in Figure 1-7 with details in Figures 1-8 to 1-12.

Chapter 1 IntrOduCtIOn

https://dev.mysql.com/doc/index-other.html

27

You install the sakila database by first sourcing the sakila-schema.sql file and

then the sakila-data.sql file. For example, the following is using MySQL Shell:

MySQL [localhost+ ssl] SQL> \source sakila-schema.sql

MySQL [localhost+ ssl] SQL> \source sakila-data.sql

Add the path to the files if they are not located in the current directory.

 Test Data: The employees Schema
The employees database (called employee data on the MySQL documentation download

page; the name of the GitHub repository is test_db) was originally created by Fusheng

Wang and Carlo Zaniolo and is the largest of the test data sets linked from MySQL’s

homepage. It comes with a choice of using nonpartitioned tables or partitioning two of

the largest tables. The total size of the data files is around 180 MiB for the nonpartitioned

version and 440 MiB for the partitioned version.

 Schema
The employees database consists of six tables and two views. You can optionally install

two more views, five stored functions, and two stored procedures. The tables are shown

in Figure 1-14.

Chapter 1 IntrOduCtIOn

28

Figure 1-14. The tables, views, and routines in the employees database

Chapter 1 IntrOduCtIOn

29

By today’s standards, it is still a relatively small amount of data in the database, but it

is big enough that you can start to see lower-level contention, and for this reason, it is the

schema used to cause semaphore waits in Chapter 18.

 Installation
You can download a ZIP file with the files required for the installation, or you can clone

the GitHub repository at https://github.com/datacharmer/test_db. At the time of

writing, there is only a single branch named master. If you have downloaded the ZIP file,

it will unzip into a directory named test_db-master.

There are several files. The two relevant for installing the employees database

in MySQL 8 are employees.sql and employees_partitioned.sql. The difference

is whether the salaries and titles tables are partitioned. This book uses the

unpartitioned schema. (There is also employees_partitioned_5.1.sql which is meant

for MySQL 5.1 where the partitioning scheme used in employees_partitioned.sql is

not supported.)

The data is loaded by sourcing the .dump files using the SOURCE command which

is only supported in MySQL Shell in 8.0.19 (in practice 8.0.20 due to a bug) and later.

Go to the directory with the source files, and choose the employees.sql or employees_

partitioned.sql file, depending on whether you want to use partitioning or not, for

example

mysql> \source employees.sql

The import takes a little time and completes by showing how long it took:

+---------------------+

| data_load_time_diff |

+---------------------+

| 00:02:50 |

+---------------------+

1 row in set (0.0085 sec)

Optionally, you can load some extra views and stored routines by sourcing the

objects.sql file:

mysql> \source objects.sql

Chapter 1 IntrOduCtIOn

https://github.com/datacharmer/test_db

30

When you load the employees schema using the concurrency_book.generate.

load() method, the objects.sql file is always included.

You are now ready to dive into the world of MySQL concurrency.

 Summary
This chapter started the journey to understand MySQL concurrency of which locks and

transactions are important topics. First it was discussed why locks are needed and at

what levels they exist. Then it was covered that transactions must be included in the

discussion as some locks are held for the duration of the transaction and the transaction

isolation level influences the duration of the locks as well as the number of locks.

The rest of the chapter discussed how the examples are used in this book and

introduced the three sets of test data that is required to reproduce the test cases. To make

it easier to load the data and execute the test cases, the concurrency_book.generate

module for MySQL Shell was also introduced.

In the next chapter, it will be discussed how you can monitor locks.

Chapter 1 IntrOduCtIOn

31
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_2

CHAPTER 2

Monitoring Locks
and Mutexes
Monitoring is essential to understanding where bottlenecks occur in your system. You

need to use monitoring both to determine sources of contention and to verify that the

changes you make reduce the contention.

This and the two following two chapters provide an overview of lock and mutex

monitoring, InnoDB transaction monitoring, and general transaction monitoring in

the Performance Schema. The remainder of the books shows examples of how you

can use these monitoring resources to identify and investigate contention. Particularly

Chapters 13–18 use monitoring extensively during the discussion of the case studies.

In this chapter, you will learn how you can monitor locks and mutexes. The primary

resource is the Performance Schema which is covered first. Next, the ready-made

reports in the sys schema are discussed. The second half of the chapter covers the status

metrics, InnoDB lock monitoring, and InnoDB mutex monitoring.

Note Do not worry if you do not know what the various locks and mutexes
are yet. You will learn this later with examples of using the monitoring sources
discussed in this chapter.

 The Performance Schema
The Performance Schema contains the source of most of the lock information available

except for deadlocks. Not only can you use the lock information in the Performance

Schema directly; it is also used for two lock-related views in the sys schema. Additionally,

you can use the Performance Schema to investigate the low-level synchronization objects

such as mutexes. First, it will be shown how metadata and table locks can be investigated.

https://doi.org/10.1007/978-1-4842-6652-6_2#DOI

32

 Metadata and Table Locks
Metadata locks are the most generic of the higher-level locks, and there is support for

a wide range of locks ranging from the global read lock to low-level locks like for the

access control list (ACL). The locks are monitored using the metadata_locks table which

contains information about user-level locks, metadata locks, and similar. To record

information, the wait/lock/metadata/sql/mdl Performance Schema instrument must

be enabled (it is enabled by default in MySQL 8). There is an example later showing how

you can enable instruments.

The metadata_locks table contains 11 columns which are summarized in Table 2-1.

Table 2-1. The performance_schema.metadata_locks table

Column Name Description

OBJECT_TYPE The kind of lock that is held such as GLOBAL for the global read

lock and TABLE for tables and views.

Appendix A includes a complete list of possible values.

OBJECT_SCHEMA The schema the object that is locked belongs to.

OBJECT_NAME The name of the locked object.

COLUMN_NAME For column level locks, the column name of the locked column.

OBJECT_INSTANCE_BEGIN The memory address of the object.

LOCK_TYPE The lock access level such as shared, exclusive, or intention.

Appendix A includes a complete list of possible values.

LOCK_DURATION How long the lock is held for. Supported values are STATEMENT,

TRANSACTION, and EXPLICIT.

LOCK_STATUS The status of the lock. In addition to a granted and pending status,

it can also show that the lock request timed out, was a victim, etc.

SOURCE The place in the source code where the lock was requested.

OWNER_THREAD_ID The Performance Schema thread id of the thread that requested the

lock.

OWNER_EVENT_ID The event id of the event requesting the lock.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

33

The primary key of the table is the OBJECT_INSTANCE_BEGIN column.

Listing 2-1 shows an example of obtaining a table metadata lock and querying it in

the metadata_locks table. Some of the details will be different for you.

Listing 2-1. Example use of the metadata_locks table

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 19 59 6

-- Connection 1

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

mysql> SELECT * FROM world.city WHERE ID = 130;

+-----+--------+-------------+-----------------+------------+

| ID | Name | CountryCode | District | Population |

+-----+--------+-------------+-----------------+------------+

| 130 | Sydney | AUS | New South Wales | 3276207 |

+-----+--------+-------------+-----------------+------------+

1 row in set (0.0005 sec)

mysql> SELECT *

 FROM performance_schema.metadata_locks

 WHERE OBJECT_TYPE = 'TABLE'

 AND OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'

 AND OWNER_THREAD_ID = PS_CURRENT_THREAD_ID()\G

*************************** 1. row ***************************

 OBJECT_TYPE: TABLE

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 COLUMN_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2639965404080

 LOCK_TYPE: SHARED_READ

 LOCK_DURATION: TRANSACTION

 LOCK_STATUS: GRANTED

 SOURCE: sql_parse.cc:6162

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

34

 OWNER_THREAD_ID: 59

 OWNER_EVENT_ID: 10

1 row in set (0.0006 sec)

mysql> ROLLBACK;

Query OK, 0 rows affected (0.0006 sec)

Here you can see that it is a table level lock on the world.city table. It is a shared

read lock, so other connections can obtain the same lock concurrently.

If you want to find out why a connection is waiting for its lock request to be granted,

you need to query the metadata_locks table for a row where the OBJECT_TYPE, OBJECT_

SCHEMA, and OBJECT_NAME are the same as for the pending lock and the LOCK_STATUS is

GRANTED. That is, to find all cases of pending locks and what is blocking them, you need a

query that self-joins the table:

SELECT OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME,

 w.OWNER_THREAD_ID AS WAITING_THREAD_ID,

 b.OWNER_THREAD_ID AS BLOCKING_THREAD_ID

 FROM performance_schema.metadata_locks w

 INNER JOIN performance_schema.metadata_locks b

 USING (OBJECT_TYPE, OBJECT_SCHEMA, OBJECT_NAME)

 WHERE w.LOCK_STATUS = 'PENDING'

 AND b.LOCK_STATUS = 'GRANTED';

You can optionally join on other Performance Schema tables such as events_

statements_current to get more information about the connections involved in the lock

wait. Alternatively, as it will be discussed later, for table metadata locks, you can use the

sys.schema_table_lock_waits view.

A less frequently used table is table_handles which holds information about

the open table handles including which table locks are currently locked. The wait/

lock/table/sql/handler Performance Schema instrument must be enabled for data

to be recorded (this is the default). The information available is similar to that of the

metadata_locks table, and Listing 2-2 shows an example of an explicit read lock on the

world.city table. Some of the details will be different for you.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

35

Listing 2-2. Example of using the table_handles table

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 21 61 6

-- Connection 1

mysql> LOCK TABLE world.city READ;

Query OK, 0 rows affected (0.0004 sec)

mysql> SELECT *

 FROM performance_schema.table_handles

 WHERE OBJECT_SCHEMA = 'world'

 AND OBJECT_NAME = 'city'

 AND OWNER_THREAD_ID = PS_CURRENT_THREAD_ID()\G

*************************** 1. row ***************************

 OBJECT_TYPE: TABLE

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

OBJECT_INSTANCE_BEGIN: 2639971828776

 OWNER_THREAD_ID: 61

 OWNER_EVENT_ID: 8

 INTERNAL_LOCK: NULL

 EXTERNAL_LOCK: READ EXTERNAL

1 row in set (0.0013 sec)

mysql> UNLOCK TABLES;

Query OK, 0 rows affected (0.0004 sec)

The INTERNAL_LOCK column contains lock information at the SQL level such as

explicit table locks on non-InnoDB tables, while the EXTERNAL_LOCK contains lock

information at the storage engine level including explicit table locks for all tables.

Unlike the metadata_locks table, you cannot use the table_handles table to

investigate lock contentions (but the metadata_locks table also includes explicit table

locks like in this example, so you can use that).

The metadata_locks and table_handles tables concern the highest-level locks. The

next step on the lock granularity latter is data locks which have their own tables.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

36

 Data Locks
Data locks are at the medium level between the metadata locks and the synchronization

objects. What makes data locks special is that you have a large variety of lock types such

as record locks, gap locks, insert intention locks, etc. that interact in complex ways as

described in Chapter 7. This makes the monitoring tables for data locks particularly useful.

The data lock information is split into two tables:

• data_locks: This table contains details of table and records locks at

the InnoDB level. It shows all locks currently held or are pending.

• data_lock_waits: Like the data_locks table, it shows locks related

to InnoDB, but only those waiting to be granted with information on

which thread is blocking the request.

You will often use these in combination to find information about lock waits.

MySQL 8 has seen a change in the way that the lock monitoring tables work. In

MySQL 5.7 and earlier, the information was available in two InnoDB-specific views in

the Information Schema, INNODB_LOCKS and INNODB_LOCK_WAITS. The major differences

are that the Performance Schema tables are created to be storage engine agnostic and

information about all locks are always made available, whereas in MySQL 5.7 and earlier,

only information about locks involved in lock waits were exposed. That all locks are always

available for investigation makes the MySQL 8 tables much more useful to learn about locks.

The data_locks table is the main table with detailed information about each lock.

The table has 15 columns as described in Table 2-2.

Table 2-2. The performance_schema.data_locks table

Column Name Description

ENGINE The storage engine for the data. For MySQL Server, this will always

be InnoDB.

ENGINE_LOCK_ID The internal id of the lock as used by the storage engine. You should

not rely on the id having a particular format.

ENGINE_TRANSACTION_ID The transaction id specific to the storage engine. For InnoDB, you

can use this id to join on the trx_id column in the information_

schema.INNODB_TRX view. You should not rely on the id having a

particular format, and the id may change in the duration of a transaction.
(continued)

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

37

The primary key of the table is (ENGINE_LOCK_ID, ENGINE).

An example of acquiring two locks and querying the data_locks table is shown in

Listing 2-3. Information such as the ids and the memory address will differ for you.

Table 2-2. (continued)

Column Name Description

THREAD_ID The Performance Schema thread id of the thread that made the lock

request.

EVENT_ID The Performance Schema event id of the event that made the lock

request. You can use this id to join with several of the events_%

tables to find more information on what triggered the lock request.

OBJECT_SCHEMA The schema the object that is subject of the lock request is in.

OBJECT_NAME The name of the object that is subject of the lock request.

PARTITION_NAME For locks involving partitions, the name of the partition.

SUBPARTITION_NAME For locks involving subpartitions, the name of the subpartition.

INDEX_NAME For locks involving indexes, the name of the index. Since everything

is an index for InnoDB, the index name is always set for record

level locks on InnoDB tables. If the row is locked, the value will be

PRIMARY or GEN_CLUST_INDEX depending on whether you have an

explicit primary key or the table used a hidden clustered index.

OBJECT_INSTANCE_BEGIN The memory address of the lock request.

LOCK_TYPE The level of the lock request. For InnoDB, the possible values are

TABLE and RECORD.

LOCK_MODE The locking mode used. This includes whether it is a shared or

exclusive lock and the finer details of the lock, for exam

ple, REC_NOT_GAP for a record lock but no gap lock.

LOCK_STATUS Whether the lock is pending (WAITING) or has been granted

(GRANTED).

LOCK_DATA Information about the data that is locked. This can, for example, be

the index value of the locked index record.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

38

Listing 2-3. Using the data_locks table

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 23 64 6

-- Connection 1

mysql> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

mysql> SELECT *

 FROM world.city

 WHERE ID = 130

 FOR SHARE;

+-----+--------+-------------+-----------------+------------+

| ID | Name | CountryCode | District | Population |

+-----+--------+-------------+-----------------+------------+

| 130 | Sydney | AUS | New South Wales | 3276207 |

+-----+--------+-------------+-----------------+------------+

1 row in set (0.0068 sec)

mysql> SELECT *

 FROM performance_schema.data_locks

 WHERE THREAD_ID = PS_CURRENT_THREAD_ID()\G

*************************** 1. row ***************************

 ENGINE: INNODB

 ENGINE_LOCK_ID: 2639727636640:3165:2639690712184

ENGINE_TRANSACTION_ID: 284114704347296

 THREAD_ID: 64

 EVENT_ID: 10

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2639690712184

 LOCK_TYPE: TABLE

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

39

 LOCK_MODE: IS

 LOCK_STATUS: GRANTED

 LOCK_DATA: NULL

*************************** 2. row ***************************

 ENGINE: INNODB

 ENGINE_LOCK_ID: 2639727636640:1926:6:131:2639690709400

ENGINE_TRANSACTION_ID: 284114704347296

 THREAD_ID: 64

 EVENT_ID: 10

 OBJECT_SCHEMA: world

 OBJECT_NAME: city

 PARTITION_NAME: NULL

 SUBPARTITION_NAME: NULL

 INDEX_NAME: PRIMARY

OBJECT_INSTANCE_BEGIN: 2639690709400

 LOCK_TYPE: RECORD

 LOCK_MODE: S,REC_NOT_GAP

 LOCK_STATUS: GRANTED

 LOCK_DATA: 130

2 rows in set (0.0018 sec)

mysql> ROLLBACK;

Query OK, 0 rows affected (0.0007 sec)

In this example, the query obtains an insert intention (IS) lock on the world.city

table and a shared (S) record, but not gap, lock (REC NOT_GAP) on the primary key with

the value 130.

The data_lock_waits table is simpler as it just includes the basic information about

current cases of lock contention as shown in Table 2-3.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

40

The table does not have a primary key. The primary purpose of the table is to

provide a simple way to determine the pending and blocking lock requests involved

in lock contention. You can then join on the data_locks table using the REQUESTING_

ENGINE_TRANSACTION_ID and BLOCKING_ENGINE_TRANSACTION_ID columns as well as to

other tables to obtain more information. A good example of this is the sys.innodb_lock_

waits view.

This far, the Performance Schema tables that have been discussed have been

for locks that are directly a result of the statements that are executed. There are also

lower- level synchronization waits that are important to monitor in high-concurrency

situations.

 Synchronization Waits
The synchronization waits are the most difficult to monitor for several reasons. They

occur very frequently, usually at a very short duration, and monitoring them has a high

overhead. Instrumentation of the synchronization waits is also not enabled by default.

Table 2-3. The performance_schema.data_lock_waits table

Column Name Description

ENGINE The storage engine where the lock contention occurs.

REQUESTING_ENGINE_LOCK_ID The ENGINE_LOCK_ID for the pending lock.

REQUESTING_ENGINE_TRANSACTION_ID The ENGINE_TRANSACTION_ID for the pending lock.

REQUESTING_THREAD_ID The THREAD_ID for the pending lock.

REQUESTING_EVENT_ID The EVENT_ID for the pending lock.

REQUESTING_OBJECT_INSTANCE_BEGIN The OBJECT_INSTANCE_BEGIN for the pending lock.

BLOCKING_ENGINE_LOCK_ID The ENGINE_LOCK_ID for the blocking lock.

BLOCKING_ENGINE_TRANSACTION_ID The ENGINE_TRANSACTION_ID for the blocking lock.

BLOCKING_THREAD_ID The THREAD_ID for the blocking lock.

BLOCKING_EVENT_ID The EVENT_ID for the blocking lock.

BLOCKING_OBJECT_INSTANCE_BEGIN The OBJECT_INSTANCE_BEGIN for the blocking lock.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

41

The synchronization waits are split into five categories:

• cond: Conditions used in thread to thread signals.

• mutex: A mutual exclusion point that protects code parts or other

resources.

• prlock: A priority read/write lock.

• rwlock: A read/write lock used to limit concurrent access to specific

variables, for example, for changing the gtid_mode system variable.

• sxlock: A shared-exclusive read/write lock. This is currently only

used by InnoDB, for example, to improve the scalability of the B-tree

searches.

The instrument names for the synchronization waits start with wait/synch/ followed

by the name of the category, the area the wait belongs to (such as sql or innodb), and the

name of the wait. For example, the mutex guarding the InnoDB double write buffer has

the name wait/synch/mutex/innodb/dblwr_mutex.

You enable the instrumentation of the synchronization waits by setting the ENABLED

and optionally the TIMED columns in the performance_schema.setup_instruments table

for the instruments you want to monitor. Additionally, you will need to enable events_

waits_current and optionally events_waits_history and/or events_waits_history_

long in performance_schema.setup_consumers. For example, to monitor the mutex on

the InnoDB double write buffer

mysql> UPDATE performance_schema.setup_instruments

 SET ENABLED = 'YES',

 TIMED = 'YES'

 WHERE NAME = 'wait/synch/mutex/innodb/dblwr_mutex';

Query OK, 1 row affected (0.0011 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> UPDATE performance_schema.setup_consumers

 SET ENABLED = 'YES'

 WHERE NAME = 'events_waits_current';

Query OK, 1 row affected (0.0005 sec)

Rows matched: 1 Changed: 1 Warnings: 0

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

42

In general, it is better to enable monitoring of synchronization instruments in the

configuration file to ensure they are properly set up from the time MySQL starts up:

[mysqld]

performance_schema_instrument = wait/synch/mutex/innodb/dblwr_mutex=ON

performance_schema_consumer_events_waits_current = ON

Then restart MySQL.

Caution Be very careful in enabling instrumentation of the synchronization waits
and the corresponding consumers on production systems. Doing so can cause a
high enough overhead that you will effectively have an outage. The more that are
enabled, the higher overhead and the more likely the monitoring interferes with the
measurements, so the conclusions are wrong.

You can now monitor the waits using one of the events_waits_% tables:

• events_waits_current: The current ongoing or last completed wait

events for each existing thread. This requires the events_waits_

current consumer to be enabled.

• events_waits_history: The last ten (the performance_schema_

events_waits_history_size option) wait events for each existing

thread. This requires the events_waits_history consumer to be

enabled in addition to the events_waits_current consumer.

• events_waits_history_long: The last 10,000 (the performance_

schema_events_waits_history_long_size option) events globally,

including for threads that no longer exist. This requires the events_

waits_history_long consumer to be enabled in addition to the

events_waits_current consumer.

• events_waits_summary_by_account_by_event_name: The wait

events grouped by the username and hostname of the accounts (also

called actors in the Performance Schema).

• events_waits_summary_by_host_by_event_name: The wait events

grouped by the hostname of the account triggering the event and

event name.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

43

• events_waits_summary_by_instance: The wait events grouped by

the event name as well as the memory address (OBJECT_INSTANCE_

BEGIN) of the object. This is useful for events with more than one

instance to monitor whether the waits are evenly distributed among

the instances. An example is the table cache mutex (wait/synch/

mutex/sql/LOCK_table_cache) which has one object per table cache

instance (table_open_cache_instances).

• events_waits_summary_by_thread_by_event_name: The wait events

for currently existing threads grouped by the thread id and event

name.

• events_waits_summary_by_user_by_event_name: The wait events

grouped by the username of the account triggering the event and

event name.

• events_waits_summary_global_by_event_name: The wait events

grouped by the event names. This table is useful to get an overview of

how much time is spent waiting for a given type of event.

Given how short lived a synchronization wait normally is and how frequently they

are encountered, the summary tables are usually the most useful for investigating waits

using the Performance Schema. That said, since the relevant wait instruments are not

enabled by default and they have relatively high overhead when monitoring them,

usually the semaphore section of the InnoDB monitor or the SHOW ENGINE INNODB

MUTEX statement as described later in this chapter is used for InnoDB mutexes and

semaphores. The exception is when you want to investigate a specific contention issue.

Another useful way to use the Performance Schema for lock analysis is to query for

the errors that statements are encountering.

 Statement and Error Tables
The Performance Schema includes several tables that can be used to investigate the

errors that are encountered. Since a failure to obtain a lock either due to a timeout or

a deadlock triggers an error, you can query for lock-related errors to determine which

statements, accounts, and so on that are most affected by lock contention.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

44

At the individual statement level, you can use the events_statements_current,

events_statements_history, and events_statements_history_long to see whether

any error or a specific error has occurred. The first two of the tables are enabled by

default, whereas the events_statements_history_long table requires that you enable

the events_statements_history_long consumer. Listing 2-4 shows an example of a lock

wait timeout and how it shows up in the events_statements_history table.

Listing 2-4. Example of a lock error in the statement tables

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 63 179 6

-- 2 64 180 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0011 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SET SESSION innodb_lock_wait_timeout = 1;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

45

Connection 2> SELECT thread_id, event_id,

 FORMAT_PICO_TIME(lock_time) AS lock_time,

 sys.format_statement(SQL_TEXT) AS statement,

 digest, mysql_errno,

 returned_sqlstate, message_text, errors

 FROM performance_schema.events_statements_history

 WHERE thread_id = PS_CURRENT_THREAD_ID()

 AND mysql_errno > 0\G

*************************** 1. row ***************************

 thread_id: 180

 event_id: 10

 lock_time: 271.00 us

 statement: UPDATE world.city SET Popul ... Population + 1 WHERE

ID = 130

 digest: 3e9795ad6fc0f4e3a4b4e99f33fbab2dc7b40d0761a8adbc60abfab

02326108d

 mysql_errno: 1205

returned_sqlstate: HY000

 message_text: Lock wait timeout exceeded; try restarting transaction

 errors: 1

1 row in set (0.0016 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0472 sec)

-- Connection 2

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

There are a few things worth noting from the example. The first thing is that the

lock time is only 271 microseconds despite that it took a full second before the lock wait

timeout occurred. That is, waiting for a record lock inside InnoDB is not adding to the

lock time reported by the Performance Schema, so you cannot use that to investigate

record level lock contention.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

46

The second thing is that the mysql_errno, returned_sqlstate, and message_text

include the same error information as it returned to the client which makes it useful for

querying as it is also done in this case. Third, the errors column contains a count of the

number of errors encountered. While the count doesn’t say anything about the nature

of the error, it is useful as unlike the columns with the specifics of the error, the error

counter is also present in the statement summary tables, so you can use it to find which

statements encounter an error of any kind.

Tip It can be useful to log encountered errors in the application. You can then,
for example, analyze the application logs with a service like Splunk to generate
reports showing which errors are encountered and when they are a problem.

A group of summary tables of special interest in this context consists of the tables

that summarize errors. There are five such tables grouped by the account, host, thread,

user, and global, respectively:

mysql> SHOW TABLES FROM performance_schema LIKE '%error%';

+---+

| Tables_in_performance_schema (%error%) |

+---+

| events_errors_summary_by_account_by_error |

| events_errors_summary_by_host_by_error |

| events_errors_summary_by_thread_by_error |

| events_errors_summary_by_user_by_error |

| events_errors_summary_global_by_error |

+---+

5 rows in set (0.0012 sec)

For example, to retrieve the statistics for lock wait timeouts and deadlocks

mysql> SELECT *

 FROM performance_schema.events_errors_summary_global_by_error

 WHERE error_name IN ('ER_LOCK_WAIT_TIMEOUT', 'ER_LOCK_DEADLOCK')\G

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

47

*************************** 1. row ***************************

 ERROR_NUMBER: 1205

 ERROR_NAME: ER_LOCK_WAIT_TIMEOUT

 SQL_STATE: HY000

 SUM_ERROR_RAISED: 4

SUM_ERROR_HANDLED: 0

 FIRST_SEEN: 2020-06-28 11:33:10

 LAST_SEEN: 2020-06-28 11:49:30

*************************** 2. row ***************************

 ERROR_NUMBER: 1213

 ERROR_NAME: ER_LOCK_DEADLOCK

 SQL_STATE: 40001

 SUM_ERROR_RAISED: 3

SUM_ERROR_HANDLED: 0

 FIRST_SEEN: 2020-06-27 12:06:38

 LAST_SEEN: 2020-06-27 12:54:27

2 rows in set (0.0048 sec)

While this does not help you identify which statements encounter the errors, it can

help you monitor the frequency you encounter the errors and, in that way, determine

whether lock errors become more frequent.

Tip The events_errors_summary_global_by_error is populated with all
known errors from the time MySQL is started even if the error has not yet been
encountered. So, you can safely query for specific errors at all time including using
the table to look up the error number from the name.

The data in the Performance Schema tables is the raw data, either as individual

events or aggregated. Often when you investigate lock issues or monitor for lock issues,

it is more interesting to determine if there are any lock waits or to obtain a report of the

wait events where most time is spent. For that information, you need to use the sys

schema.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

48

 The sys Schema
The sys schema can be considered a collection of views that serve as reports on the

Performance Schema and Information Schema as well as various utility functions and

procedures. For this discussion the focus is on the two views that take the information

in the Performance Schema tables and return the lock pairs where one lock cannot be

granted because of the other lock. Thus, they show where there are problems with lock

waits. The two views are innodb_lock_waits and schema_table_lock_waits.

The innodb_lock_waits view uses the data_locks and data_lock_waits view in the

Performance Schema to return all cases of lock waits for InnoDB record locks. It shows

information such as what lock the connection is trying to obtain and which connections

and queries are involved. The view also exists as x$innodb_lock_waits, if you need the

information without formatting.

The schema_table_lock_waits view works in a similar way but uses the metadata_

locks table to return lock waits related to schema objects. The information is also

available unformatted in the x$schema_table_lock_waits view.

Tip Several views also exist where x$ is prepended to the view name. This view
contains the same information as the view without x$ in the name except all the
data is unformatted. This makes the data more suitable for scripts and programs
that process the information.

Chapters 13–17 include examples of using both views to investigate lock issues.

For a high-level view of the contention, you can also use the status counters and

InnoDB metrics.

 Status Counters and InnoDB Metrics
There are several status counters and InnoDB metrics that provide information about

locking. These are mostly used at the global (instance) level and can be useful to detect

an overall increase in lock issues.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

49

 Querying the Data
There are two sources for status counters and InnoDB metrics. The global status

counters can be found in the performance_schema.global_status table or with the

SHOW GLOBAL STATUS statement. The InnoDB metrics are found in the information_

schema.INNODB_METRICS view.

The InnoDB metrics are similar to the global status variables and can provide

some valuable information on status of InnoDB. The NAME column can be used to

query the metric by name. At the time of writing, there are 313 visible metrics of which

74 are enabled by default. There is also one hidden metric which is the latch metric

that controls whether mutex wait statistics are collected. The metrics are grouped into

subsystems (the SUBSYSTEM column), and for each metric there is a description of what

the metric measures in the COMMENT column, and the type of metric (counter, value, etc.)

can be seen in the TYPE column.

A great way to monitor all of these metrics together is to use the sys.metrics view.

Listing 2-5 shows an example of retrieving the metrics.

Listing 2-5. Lock metrics

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 27 69 6

-- Connection 1

mysql> SELECT Variable_name,

 Variable_value AS Value,

 Enabled

 FROM sys.metrics

 WHERE Variable_name LIKE 'innodb_row_lock%'

 OR Variable_name LIKE 'Table_locks%'

 OR Variable_name LIKE 'innodb_rwlock_%'

 OR Type = 'InnoDB Metrics - lock';

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

50

+-------------------------------+--------+---------+

| Variable_name | Value | Enabled |

+-------------------------------+--------+---------+

| innodb_row_lock_current_waits | 0 | YES |

| innodb_row_lock_time | 2163 | YES |

| innodb_row_lock_time_avg | 721 | YES |

| innodb_row_lock_time_max | 2000 | YES |

| innodb_row_lock_waits | 3 | YES |

| table_locks_immediate | 330 | YES |

| table_locks_waited | 0 | YES |

| lock_deadlock_false_positives | 0 | YES |

| lock_deadlock_rounds | 37214 | YES |

| lock_deadlocks | 1 | YES |

| lock_rec_grant_attempts | 1 | YES |

| lock_rec_lock_created | 0 | NO |

| lock_rec_lock_removed | 0 | NO |

| lock_rec_lock_requests | 0 | NO |

| lock_rec_lock_waits | 0 | NO |

| lock_rec_locks | 0 | NO |

| lock_rec_release_attempts | 24317 | YES |

| lock_row_lock_current_waits | 0 | YES |

| lock_schedule_refreshes | 37214 | YES |

| lock_table_lock_created | 0 | NO |

| lock_table_lock_removed | 0 | NO |

| lock_table_lock_waits | 0 | NO |

| lock_table_locks | 0 | NO |

| lock_threads_waiting | 0 | YES |

| lock_timeouts | 1 | YES |

| innodb_rwlock_s_os_waits | 12248 | YES |

| innodb_rwlock_s_spin_rounds | 19299 | YES |

| innodb_rwlock_s_spin_waits | 6811 | YES |

| innodb_rwlock_sx_os_waits | 171 | YES |

| innodb_rwlock_sx_spin_rounds | 5239 | YES |

| innodb_rwlock_sx_spin_waits | 182 | YES |

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

51

| innodb_rwlock_x_os_waits | 26283 | YES |

| innodb_rwlock_x_spin_rounds | 774745 | YES |

| innodb_rwlock_x_spin_waits | 12666 | YES |

+-------------------------------+--------+---------+

34 rows in set (0.0174 sec)

The innodb_row_lock_%, lock_deadlocks, and lock_timeouts metrics are the

most interesting. The row lock metrics show how many locks are currently waiting and

statistics for the amount of time in milliseconds spent on waiting to acquire InnoDB

record locks. The lock_deadlocks and lock_timeouts metrics show the number of

deadlocks and lock wait timeouts that have been encountered, respectively.

If you encounter InnoDB mutex or semaphore contention, then the innodb_

rwlock_% metrics are useful to monitor the rate the waits happen and how many rounds

that are spent waiting.

As you can see, not all of the metrics are enabled by default (these are all InnoDB

metrics), so let’s investigate how it is possible to enable and disable the metrics that

come from the INNODB_METRICS view.

 Configuring the InnoDB Metrics
The InnoDB metrics can be configured, so you can choose which are enabled, and you

can reset the statistics. You enable, disable, and reset the metrics using global system

variables:

• innodb_monitor_disable: Disable one or more metrics.

• innodb_monitor_enable: Enable one or more metrics.

• innodb_monitor_reset: Reset the counter for one or more metrics.

• innodb_monitor_reset_all: Reset all statistics including the counter,

minimum, and maximum values for one or more metrics.

The metrics can be turned on and off as needed with the current status found in the

STATUS column of the INNODB_METRICS view. You specify the name of the metric or the

name of the subsystem prepended with module_ as the value to the innodb_monitor_

enable or innodb_monitor_disable variable, and you can use % as a wild card. The

value all works as a special value to affect all metrics.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

52

Note When you specify a module, it will only work as expected if there is no
metric matching the module. examples where you cannot specify the module are
module_cpu, module_page_track, and module_dblwr.

Listing 2-6 shows an example of enabling and using all the metrics matching icp%

(which happens to be the metrics in the icp – index condition pushdown – subsystem).

After querying the metrics, they are disabled again using the subsystem as the argument.

The values of COUNT depend on the workload you have at the time of the query.

Listing 2-6. Using the INNODB_METRICS view

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 32 74 6

-- Connection 1

mysql> SET GLOBAL innodb_monitor_enable = 'icp%';

Query OK, 0 rows affected (0.0003 sec)

mysql> SELECT NAME, SUBSYSTEM, COUNT, MIN_COUNT,

 MAX_COUNT, AVG_COUNT,

 STATUS, COMMENT

 FROM information_schema.INNODB_METRICS

 WHERE SUBSYSTEM = 'icp'\G

*************************** 1. row ***************************

 NAME: icp_attempts

SUBSYSTEM: icp

 COUNT: 0

MIN_COUNT: NULL

MAX_COUNT: NULL

AVG_COUNT: 0

 STATUS: enabled

 COMMENT: Number of attempts for index push-down condition checks

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

53

*************************** 2. row ***************************

 NAME: icp_no_match

SUBSYSTEM: icp

 COUNT: 0

MIN_COUNT: NULL

MAX_COUNT: NULL

AVG_COUNT: 0

 STATUS: enabled

 COMMENT: Index push-down condition does not match

*************************** 3. row ***************************

 NAME: icp_out_of_range

SUBSYSTEM: icp

 COUNT: 0

MIN_COUNT: NULL

MAX_COUNT: NULL

AVG_COUNT: 0

 STATUS: enabled

 COMMENT: Index push-down condition out of range

*************************** 4. row ***************************

 NAME: icp_match

SUBSYSTEM: icp

 COUNT: 0

MIN_COUNT: NULL

MAX_COUNT: NULL

AVG_COUNT: 0

 STATUS: enabled

 COMMENT: Index push-down condition matches

4 rows in set (0.0011 sec)

mysql> SET GLOBAL innodb_monitor_disable = 'module_icp';

Query OK, 0 rows affected (0.0004 sec)

First, the metrics are enabled using the innodb_monitor_enable variable; then

the values are retrieved. In addition to the values shown, there is also a set of columns

with the _RESET suffix which are reset when you set the innodb_monitor_reset (only

the counter) or innodb_monitor_reset_all system variable. Finally, the metrics are

disabled again.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

54

Caution The metrics have varying overheads, so you are recommended to test
with your workload before enabling metrics in production.

 InnoDB Lock Monitor and Deadlock Logging
InnoDB has for a long time had its own lock monitor with the lock information returned

in the InnoDB monitor output. By default, the InnoDB monitor includes information

about the latest deadlock as well as locks involved in lock waits. By enabling the innodb_

status_output_locks option (disabled by default), all locks will be listed; this is similar

to what you have in the Performance Schema data_locks table.

To demonstrate the deadlock and transaction information, you can create a deadlock

using the steps in Listing 2-7.

Listing 2-7. An example of creating a deadlock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 19 66 6

-- 2 20 67 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0008 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

55

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 3805;

Query OK, 1 row affected (0.0008 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

-- Connection 1

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 3805;

2020-06-27 12:54:26.833760 1 [ERROR] mysqlsh.DBError ...

ERROR: 1213: Deadlock found when trying to get lock; try restarting

transaction

-- Connection 2

Query OK, 1 row affected (0.1013 sec)

Rows matched: 1 Changed: 1 Warnings: 0

You generate the InnoDB lock monitor output using the SHOW ENGINE INNODB

STATUS statement. Listing 2-8 shows an example of enabling all lock information and

generating the monitor output after executing the statements in Listing 2-7. (The

statements used in Listing 2-8 are included as an investigation for the Listing 2-7

workload in the concurrency_book Python module.) The complete InnoDB monitor

output is also available from this book’s GitHub repository in the file listing_2_8.txt.

Listing 2-8. The InnoDB monitor output

-- Investigation #1

-- Connection 3

Connection 3> SET GLOBAL innodb_status_output_locks = ON;

Query OK, 0 rows affected (0.0005 sec)

-- Investigation #3

Connection 3> SHOW ENGINE INNODB STATUS\G

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

56

*************************** 1. row ***************************

 Type: InnoDB

 Name:

Status:

=====================================

2020-06-27 12:54:29 0x7f00 INNODB MONITOR OUTPUT

=====================================

Per second averages calculated from the last 50 seconds

BACKGROUND THREAD

srv_master_thread loops: 2532 srv_active, 0 srv_shutdown, 1224 srv_idle

srv_master_thread log flush and writes: 0

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 7750

OS WAIT ARRAY INFO: signal count 6744

RW-shared spins 3033, rounds 5292, OS waits 2261

RW-excl spins 1600, rounds 25565, OS waits 1082

RW-sx spins 2167, rounds 61634, OS waits 1874

Spin rounds per wait: 1.74 RW-shared, 15.98 RW-excl, 28.44 RW-sx

LATEST DETECTED DEADLOCK

2020-06-27 12:54:26 0x862c

*** (1) TRANSACTION:

TRANSACTION 296726, ACTIVE 0 sec starting index read

mysql tables in use 1, locked 1

LOCK WAIT 3 lock struct(s), heap size 1136, 2 row lock(s), undo log entries

1

MySQL thread id 20, OS thread handle 29332, query id 56150 localhost ::1

root updating

UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

57

*** (1) HOLDS THE LOCK(S):

RECORD LOCKS space id 259 page no 34 n bits 248 index PRIMARY of table

`world`.`city` trx id 296726 lock_mode X locks rec but not gap

Record lock, heap no 66 PHYSICAL RECORD: n_fields 7; compact format; info

bits 0

 0: len 4; hex 80000edd; asc ;;

 1: len 6; hex 000000048716; asc ;;

 2: len 7; hex 020000015f2949; asc _)I;;

 3: len 30; hex 53616e204672616e636973636f202020202020202020202020202020

2020; asc San Francisco ; (total 35 bytes);

 4: len 3; hex 555341; asc USA;;

 5: len 20; hex 43616c69666f726e696120202020202020202020; asc

California ;;

 6: len 4; hex 800bda1e; asc ;;

*** (1) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 259 page no 7 n bits 248 index PRIMARY of table

`world`.`city` trx id 296726 lock_mode X locks rec but not gap waiting

Record lock, heap no 44 PHYSICAL RECORD: n_fields 7; compact format; info

bits 0

 0: len 4; hex 80000082; asc ;;

 1: len 6; hex 000000048715; asc ;;

 2: len 7; hex 01000000d81fcd; asc ;;

 3: len 30; hex 5379646e657920

20; asc Sydney ; (total 35 bytes);

 4: len 3; hex 415553; asc AUS;;

 5: len 20; hex 4e657720536f7574682057616c65732020202020; asc New South

Wales ;;

 6: len 4; hex 8031fdb0; asc 1 ;;

*** (2) TRANSACTION:

TRANSACTION 296725, ACTIVE 0 sec starting index read

mysql tables in use 1, locked 1

LOCK WAIT 3 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 1

MySQL thread id 19, OS thread handle 6576, query id 56151 localhost ::1

root updating

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

58

UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 3805

*** (2) HOLDS THE LOCK(S):

RECORD LOCKS space id 259 page no 7 n bits 248 index PRIMARY of table

`world`.`city` trx id 296725 lock_mode X locks rec but not gap

Record lock, heap no 44 PHYSICAL RECORD: n_fields 7; compact format; info

bits 0

 0: len 4; hex 80000082; asc ;;

 1: len 6; hex 000000048715; asc ;;

 2: len 7; hex 01000000d81fcd; asc ;;

 3: len 30; hex 5379646e657920

2020; asc Sydney ; (total 35 bytes);

 4: len 3; hex 415553; asc AUS;;

 5: len 20; hex 4e657720536f7574682057616c65732020202020; asc New South

Wales ;;

 6: len 4; hex 8031fdb0; asc 1 ;;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 259 page no 34 n bits 248 index PRIMARY of table

`world`.`city` trx id 296725 lock_mode X locks rec but not gap waiting

Record lock, heap no 66 PHYSICAL RECORD: n_fields 7; compact format; info

bits 0

 0: len 4; hex 80000edd; asc ;;

 1: len 6; hex 000000048716; asc ;;

 2: len 7; hex 020000015f2949; asc _)I;;

 3: len 30; hex 53616e204672616e636973636f202020202020202020202020202020

2020; asc San Francisco ; (total 35 bytes);

 4: len 3; hex 555341; asc USA;;

 5: len 20; hex 43616c69666f726e696120202020202020202020; asc

California ;;

 6: len 4; hex 800bda1e; asc ;;

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

59

*** WE ROLL BACK TRANSACTION (2)

TRANSACTIONS

Trx id counter 296728

Purge done for trx's n:o < 296728 undo n:o < 0 state: running but idle

History list length 1

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 283598406541472, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 283598406540640, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 283598406539808, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 283598406538976, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 296726, ACTIVE 3 sec

3 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 2

MySQL thread id 20, OS thread handle 29332, query id 56150 localhost ::1

root

TABLE LOCK table `world`.`city` trx id 296726 lock mode IX

RECORD LOCKS space id 259 page no 34 n bits 248 index PRIMARY of table

`world`.`city` trx id 296726 lock_mode X locks rec but not gap

Record lock, heap no 66 PHYSICAL RECORD: n_fields 7; compact format; info

bits 0

 0: len 4; hex 80000edd; asc ;;

 1: len 6; hex 000000048716; asc ;;

 2: len 7; hex 020000015f2949; asc _)I;;

 3: len 30; hex 53616e204672616e636973636f202020202020202020202020202020

2020; asc San Francisco ; (total 35 bytes);

 4: len 3; hex 555341; asc USA;;

 5: len 20; hex 43616c69666f726e696120202020202020202020; asc

California ;;

 6: len 4; hex 800bda1e; asc ;;

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

60

RECORD LOCKS space id 259 page no 7 n bits 248 index PRIMARY of table

`world`.`city` trx id 296726 lock_mode X locks rec but not gap

Record lock, heap no 44 PHYSICAL RECORD: n_fields 7; compact format; info

bits 0

 0: len 4; hex 80000082; asc ;;

 1: len 6; hex 000000048716; asc ;;

 2: len 7; hex 020000015f296c; asc _)l;;

 3: len 30; hex 5379646e657920

2020; asc Sydney ; (total 35 bytes);

 4: len 3; hex 415553; asc AUS;;

 5: len 20; hex 4e657720536f7574682057616c65732020202020; asc New South

Wales ;;

 6: len 4; hex 8031fdb0; asc 1 ;;

...

-- Investigation #2

Connection 3> SET GLOBAL innodb_status_output_locks = OFF;

Query OK, 0 rows affected (0.0005 sec)

Appendix A includes an overview of the sections that the report consists of.

Near the top is the section LATEST DETECTED DEADLOCK which includes details of

the transactions and locks involved in the latest deadlock and when it occurred. If

no deadlocks have occurred since the last restart of MySQL, this section is omitted.

Chapter 16 includes an example of investigating deadlocks.

Note The deadlock section in the InnoDB monitor output only includes
information for deadlocks involving InnoDB record locks. For deadlocks involving
non-InnoDB locks such as user-level locks, there is no equivalent information.

A little further down the output, there is the section TRANSACTIONS which lists the

InnoDB transactions. Do note that transactions that are not holding any locks (e.g.,

pure SELECT queries) are not included. In the example, there is an intention exclusive

lock held on the world.city table and exclusive locks on the rows with the primary

key equal to 3805 (the 80000edd in the record lock information for the first field means

the row with the value 0xedd, which is the same as 3805 in decimal notation) and 130

(80000082).

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

61

Tip nowadays, the lock information in the InnoDB monitor output is better
obtained from the performance_schema.data_locks and performance_
schema.data_lock_waits tables. The deadlock information is however still
very useful.

You can request the monitor output to be dumped every 15 seconds to stderr by

enabling the innodb_status_output option. Do note that the output is quite large, so be

prepared for your error log to grow quickly if you enable it. The InnoDB monitor output

can also easily end up hiding messages about more serious issues. InnoDB also enables

outputting the monitor output to the error log automatically when certain conditions

apply such as when InnoDB has difficulties finding free blocks in the buffer pool or there

are long semaphore waits.

If you want to ensure you record all deadlocks, you can enable the innodb_print_

all_deadlocks option. This causes deadlock information like that in the InnoDB

monitor output to be printed to the error log every time a deadlock occurs. This can be

useful, if you need to investigate deadlocks, but it is recommended only to enable it on

demand to avoid the error log to become very large and potentially hide other problems.

Caution Be careful if you enable regular outputs of the InnoDB monitor or
information about all deadlocks. The information may easily hide important
messages logged to the error log.

The top of the InnoDB monitor output includes information about semaphore waits

which is the last monitoring category to discuss.

 InnoDB Mutexes and Semaphores
InnoDB uses mutual exclusion objects (better known as mutexes)1 and semaphores

to guard code paths, for example, to avoid race conditions when updating the buffer

pool. There are three resources available for monitoring mutexes in MySQL of which

two have already been encountered. The most generic tool is the synchronization waits

1 https://en.wikipedia.org/wiki/Mutual_exclusion

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

https://en.wikipedia.org/wiki/Mutual_exclusion

62

in the Performance Schema; however, they are not enabled by default and can cause

performance problems to have enabled. This section focuses on the two other resources

that are specific to InnoDB.

Note In InnoDB monitoring there is no clear distinction between mutexes and
semaphores.

As seen in the previous section, the InnoDB monitor output contains a semaphores

section which shows some general statistics as well as currently waiting semaphores.

Listing 2-9 shows an example of the semaphores section with ongoing waits. (It is not trivial

to generate semaphore waits on demand, so reproduction steps have not been included.

See Chapter 18 for an example of a workload that is likely to cause semaphore waits.)

Listing 2-9. The InnoDB monitor semaphores section

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 831

--Thread 28544 has waited at buf0buf.cc line 4637 for 0 seconds the

semaphore:

Mutex at 000001F1AD24D5E8, Mutex BUF_POOL_LRU_LIST created buf0buf.cc:1228,

lock var 1

--Thread 10676 has waited at buf0flu.cc line 1639 for 1 seconds the

semaphore:

Mutex at 000001F1AD24D5E8, Mutex BUF_POOL_LRU_LIST created buf0buf.cc:1228,

lock var 1

--Thread 10900 has waited at buf0lru.cc line 1051 for 0 seconds the

semaphore:

Mutex at 000001F1AD24D5E8, Mutex BUF_POOL_LRU_LIST created buf0buf.cc:1228,

lock var 1

--Thread 28128 has waited at buf0buf.cc line 2797 for 1 seconds the

semaphore:

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

63

Mutex at 000001F1AD24D5E8, Mutex BUF_POOL_LRU_LIST created buf0buf.cc:1228,

lock var 1

--Thread 33584 has waited at buf0buf.cc line 2945 for 0 seconds the

semaphore:

Mutex at 000001F1AD24D5E8, Mutex BUF_POOL_LRU_LIST created buf0buf.cc:1228,

lock var 1

OS WAIT ARRAY INFO: signal count 207

RW-shared spins 51, rounds 86, OS waits 35

RW-excl spins 39, rounds 993, OS waits 35

RW-sx spins 30, rounds 862, OS waits 25

Spin rounds per wait: 1.69 RW-shared, 25.46 RW-excl, 28.73 RW-sx

In this case the first wait is in buf0buf.cc line 4637 which refers to the source code

file name and line number where the mutex is requested. The line number depends

on the release number you are using, and the compiler/platform can even make line

number change by one. The buf0buf.cc refers to which contains the following code in

MySQL 8.0.21 around line 4637 (the line number is prefixed each line):

4577 /** Inits a page for read to the buffer buf_pool. If the page is

4578 (1) already in buf_pool, or

4579 (2) if we specify to read only ibuf pages and the page is not an

ibuf page, or

4580 (3) if the space is deleted or being deleted,

4581 then this function does nothing.

4582 Sets the io_fix flag to BUF_IO_READ and sets a non-recursive

exclusive lock

4583 on the buffer frame. The io-handler must take care that the flag is

cleared

4584 and the lock released later.

4585 @param[out] err DB_SUCCESS or DB_TABLESPACE_

DELETED

4586 @param[in] mode BUF_READ_IBUF_PAGES_ONLY, ...

4587 @param[in] page_id page id

4588 @param[in] page_size page size

4589 @param[in] unzip TRUE=request uncompressed page

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

64

4590 @return pointer to the block or NULL */

4591 buf_page_t *buf_page_init_for_read(dberr_t *err, ulint mode,

4592 const page_id_t &page_id,

4593 const page_size_t &page_size, ibool

unzip) {

...

4637 mutex_enter(&buf_pool->LRU_list_mutex);

...

The function is trying to read a page into the buffer pool and in line 4637 requests

the mutex on the LRU list of the buffer pool. This mutex was created in buf0buf.cc:1228

(also seen from the semaphores section). It is the same mutex that all the waits are for,

but in different parts of the source. So, this means that there is contention maintaining

the least recently used list of the InnoDB buffer pool. (The waits in this case were created

by having innodb_buffer_pool_size = 5M while executing concurrent queries on an

almost 2 GiB large table.)

Thus, it is in general necessary to reference the source code when investigating

semaphore waits. That said, the file name is a good hint in what part of the code the

contention is, for example, buf0buf.cc is related to the buffer pool, and buf0flu.cc is

related to the buffer pool flushing algorithm.

The semaphores section is useful to see the waits that are ongoing, but it is of little

use when monitoring over time. For that the InnoDB mutex monitor is a better option.

You access the mutex monitor using the SHOW ENGINE INNODB MUTEX statement:

mysql> SHOW ENGINE INNODB MUTEX;

+--------+------------------------------+------------+

| Type | Name | Status |

+--------+------------------------------+------------+

| InnoDB | rwlock: dict0dict.cc:2455 | waits=748 |

| InnoDB | rwlock: dict0dict.cc:2455 | waits=171 |

| InnoDB | rwlock: fil0fil.cc:3206 | waits=38 |

| InnoDB | rwlock: sync0sharded_rw.h:72 | waits=1 |

| InnoDB | rwlock: sync0sharded_rw.h:72 | waits=1 |

| InnoDB | rwlock: sync0sharded_rw.h:72 | waits=1 |

| InnoDB | sum rwlock: buf0buf.cc:778 | waits=2436 |

+--------+------------------------------+------------+

7 rows in set (0.0111 sec)

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

65

The file name and line number refers to where the mutex is created. The mutex

monitor is not the most user-friendly tool in MySQL as each mutex may be present

multiple times and the waits cannot be summed without parsing the output. However, it

is enabled by default, so you can use it at any time.

Note SHOW ENGINE INNODB MUTEX only includes mutexes and rw-lock
semaphores that has had at least one oS wait.

The collection of mutex information is enabled and disabled using the latch InnoDB

metric (which is hidden, so you cannot see the current value). There is usually no reason

to disable the latch metric.

 Summary
In this chapter the resources available for monitoring and investigating locks have been

introduced. First the Performance Schema tables were considered. There are dedicated

tables for querying the current metadata and data lock requests with information

about the object that is the target of the lock, whether it is a shared or exclusive lock

and whether the lock request has been granted. At the lowest level, there are also tables

that allow you to investigate synchronization waits; however, these are not enabled by

default and have a significant overhead. At the opposite end of the granularity scale, the

statement tables and error summary tables can be used to investigate which statements

encounter errors and the frequency of errors.

Second, the sys schema can also be useful particularly to investigate lock waits

issues with the innodb_lock_waits view providing information about ongoing InnoDB

data lock waits and schema_table_lock_waits about ongoing table metadata lock waits.

Third, at the highest level, the status counters and InnoDB metrics give an overview

of the activity on the instance including the use of locks and failure to obtain locks. If

you want more information about InnoDB locks, then the lock monitor provides similar

information to the data lock tables in the Performance Schema, but in a less readily

usable format, and the InnoDB monitor includes details of the latest occurred deadlock.

The InnoDB monitor also includes information about semaphore waits, and finally the

InnoDB mutex monitor provides statistics about mutex waits.

Another useful way to get information about the lock usage is to look at the

transaction information. This will be considered in the next chapter.

CHAPTer 2 MonITorIng LoCkS AnD MuTexeS

67
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_3

CHAPTER 3

Monitoring InnoDB
Transactions
In the previous chapter, you learned how to find information about locks at a relatively

low level. It is also important to include information at a higher level as locks have a

duration up to the completion of the transaction. (Exceptions are user locks and explicit

table locks which can last for longer.) In MySQL Server, transactions mean InnoDB, and

this chapter focuses on monitoring InnoDB transactions.

First the INNODB_TRX view in the Information Schema will be covered. This is often

the most important resource when it comes to investigating ongoing transactions.

Another source of information about transactions is the InnoDB monitor which you also

encountered in the previous chapter. Finally, the metrics in the INNODB_METRICS and the

sys.metrics views are discussed.

 Information Schema INNODB_TRX
The INNODB_TRX view in the Information Schema is the most dedicated source of

information about InnoDB transactions. It includes information such as when the

transaction started, how many rows have been modified, and how many locks are held.

The INNODB_TRX view is also used by the sys.innodb_lock_waits view to provide some

information about the transactions involved in lock wait issues. Table 3-1 summarizes

the columns in the table.

https://doi.org/10.1007/978-1-4842-6652-6_3#DOI

68

Table 3-1. The columns in the information_schema.INNODB_TRX view

Column/Data Type Description

trx_id

varchar(18)

The transaction id. This can be useful when referring to the transaction

or comparing with the output of the InnoDB monitor. Otherwise, the id

should be treated purely internal and not be given any significance.

The id is only assigned to transactions that have modified data or

locked rows; a transaction that only has executed read-only SELECT

statements will have a dummy id like 421124985258256 which will

change if the transaction starts to modify or lock records.

trx_state

varchar(13)

The state of the transaction. This can be one of RUNNING, LOCK

WAIT, ROLLING BACK, and COMMITTING.

trx_started

datetime

When the transaction was started using the system time zone.

trx_requested_

lock_id

varchar(105)

When the trx_state is LOCK WAIT, this column shows the id of the

lock that the transaction is waiting for.

trx_wait_started

datetime

When the trx_state is LOCK WAIT, this column shows when the

lock wait started using the system time zone.

trx_weight

bigint unsigned

A measure of how much work has been done by the transaction in

terms of rows modified and locks held. This is the weight that is used

to determine which transaction is rolled back in case of a deadlock.

The higher the weight, the more work has been done.

trx_mysql_thread_id

bigint unsigned

The connection id (the same as the PROCESSLIST_ID column in the

Performance Schema threads table) of the connection executing the

transaction.

trx_query

varchar(1024)

The query currently executed by the transaction. If the transaction is

idle, the query is NULL.

trx_operation_state

varchar(64)

The current operation performed by the transaction. This may be NULL

even when a query is executing.

trx_tables_in_use

bigint unsigned

The number of tables the transaction has used.

(continued)

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

69

Table 3-1. (continued)

Column/Data Type Description

trx_tables_locked

bigint unsigned

The number of tables the transaction holds row locks in.

trx_lock_structs

bigint unsigned

The number of lock structures created by the transaction.

trx_lock_memory_

bytes

bigint unsigned

The amount of memory in bytes used by the locks held by the

transaction.

trx_rows_locked

bigint unsigned

The number of record locks held by the transaction. While called row

locks, it also includes index locks.

trx_rows_modified

bigint unsigned

The number of rows modified by the transaction.

trx_concurrency_

tickets

bigint unsigned

When innodb_thread_concurrency is not 0, a transaction is

assigned innodb_concurrency_tickets tickets that it can use

before it must allow another transaction to perform work. One ticket

corresponds to accessing one row. This column shows how many

tickets are left.

trx_isolation_level

varchar(16)

The transaction isolation level used for the transaction.

trx_unique_checks

int

Whether the unique_checks variable is enabled for the connection.

trx_foreign_key_

checks

int

Whether the foreign_key_checks variable is enabled for the

connection.

trx_last_foreign_

key_error

varchar(256)

The error message of the last (if any) foreign key error encountered by

the transaction.

trx_adaptive_hash_

latched

int

Whether the transaction has locked a part of the adaptive hash index.

There is a total of innodb_adaptive_hash_index_parts parts.

This column is effectively a Boolean value.

(continued)

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

70

The information available from the INNODB_TRX view makes it possible to determine

which transactions have the greatest impact. Listing 3-1 shows an example of starting

two transactions that can be investigated.

Listing 3-1. Example transactions

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 53 163 6

-- 2 54 164 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Table 3-1. (continued)

Column/Data Type Description

trx_adaptive_hash_

timeout

bigint unsigned

Whether to keep the lock on the adaptive hash index across multiple

queries. If there is only one part for the adaptive hash index and

there is no contention, then the timeout counts down, and the lock

is released when the timeout reaches 0. When there is contention or

there are multiple parts, the lock is always released after each query,

and the timeout value is 0.

trx_is_read_only

int

Whether the transaction is a read-only transaction. A transaction can

be read- only either by declaring it explicitly or for single-statement

transactions with autocommit enabled where InnoDB can detect that

the query will only read data.

trx_autocommit_non_

locking

int

When the transaction is a single-statement non-locking SELECT and

the autocommit option is enabled, this column is set to 1. When both

this column and trx_is_read_only are 1, InnoDB can optimize the

transaction to reduce the overhead.

trx_schedule_weight

bigint unsigned

The transaction weight that is assigned to the transaction by the

Contention- Aware Transaction Scheduling (CATS) algorithm (see

Chapter 8). The value only has a meaning for transactions in the LOCK

WAIT state. This column was added in 8.0.20.

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

71

Connection 1> UPDATE world.city SET Population = Population + MOD(ID, 2) +

SLEEP(0.01);

-- Connection 2

Connection 2> SET SESSION autocommit = ON;

Query OK, 0 rows affected (0.0004 sec)

Connection 2> SELECT COUNT(*) FROM world.city WHERE ID > SLEEP(0.01);

The transactions will run for 40–50 seconds. While they are executing, you can query

the INNODB_TRX view like it is shown in Listing 3-2 (the exact data depends on the ids in

your test and when you query the INNODB_TRX view).

Listing 3-2. Example output of the INNODB_TRX view

-- Investigation #1

-- Connection 3

Connection 3> SELECT *

 FROM information_schema.INNODB_TRX

 WHERE trx_mysql_thread_id IN (53, 54)\G

*************************** 1. row ***************************

 trx_id: 296813

 trx_state: RUNNING

 trx_started: 2020-06-27 17:46:10

 trx_requested_lock_id: NULL

 trx_wait_started: NULL

 trx_weight: 1023

 trx_mysql_thread_id: 53

 trx_query: UPDATE world.city SET Population = Population +

MOD(ID, 2) + SLEEP(0.01)

 trx_operation_state: NULL

 trx_tables_in_use: 1

 trx_tables_locked: 1

 trx_lock_structs: 14

 trx_lock_memory_bytes: 1136

 trx_rows_locked: 2031

 trx_rows_modified: 1009

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

72

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

trx_last_foreign_key_error: NULL

 trx_adaptive_hash_latched: 0

 trx_adaptive_hash_timeout: 0

 trx_is_read_only: 0

trx_autocommit_non_locking: 0

 trx_schedule_weight: NULL

*************************** 2. row ***************************

 trx_id: 283598406543136

 trx_state: RUNNING

 trx_started: 2020-06-27 17:46:10

 trx_requested_lock_id: NULL

 trx_wait_started: NULL

 trx_weight: 0

 trx_mysql_thread_id: 54

 trx_query: SELECT COUNT(*) FROM world.city WHERE ID >

SLEEP(0.01)

 trx_operation_state: NULL

 trx_tables_in_use: 1

 trx_tables_locked: 0

 trx_lock_structs: 0

 trx_lock_memory_bytes: 1136

 trx_rows_locked: 0

 trx_rows_modified: 0

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

trx_last_foreign_key_error: NULL

 trx_adaptive_hash_latched: 0

 trx_adaptive_hash_timeout: 0

 trx_is_read_only: 1

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

73

trx_autocommit_non_locking: 1

 trx_schedule_weight: NULL

2 rows in set (0.0008 sec)

The first row shows an example of a transaction that modifies data. At the time the

information is retrieved, 1009 rows have been modified, and there are around twice as

many record locks. You can also see that the transaction is still actively executing a query

(an UPDATE statement).

The second row is an example of a SELECT statement executed with autocommit

enabled. Since autocommitting is enabled, there can only be one statement in the

transaction (an explicit START TRANSACTION disables autocommitting). The trx_query

column shows it is a SELECT COUNT(*) query without any lock clauses, so it is a read-only

statement. This means that InnoDB can skip some things such as preparing to hold lock

and undo information for the transaction which reduces the overhead of the transaction.

The trx_autocommit_non_locking column is set to 1 to reflect that.

Which transactions you should be worried about depends on the expected workload

on your system. If you have an OLAP workload, it is expected that there will be relatively

long-running SELECT queries. For a pure OLTP workload, any transaction running

for more than a second and modifying more than a handful of rows may be a sign of

problems. For example, to find transactions that are older than 10 seconds, you can use

the following query:

SELECT *

 FROM information_schema.INNODB_TRX

 WHERE trx_started < NOW() - INTERVAL 10 SECOND;

You can optionally join on other tables such as threads and events_statements_

current in the Performance Schema. An example of this is shown in Listing 3-3.

Listing 3-3. Querying details of old transactions

-- Investigation #3

Connection 3> SELECT thd.thread_id, thd.processlist_id,

 trx.trx_id, stmt.event_id, trx.trx_started,

 TO_SECONDS(NOW()) -

 TO_SECONDS(trx.trx_started

) AS age_seconds,

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

74

 trx.trx_rows_locked, trx.trx_rows_modified,

 FORMAT_PICO_TIME(stmt.timer_wait) AS latency,

 stmt.rows_examined, stmt.rows_affected,

 sys.format_statement(SQL_TEXT) as statement

 FROM information_schema.INNODB_TRX trx

 INNER JOIN performance_schema.threads thd

 ON thd.processlist_id = trx.trx_mysql_

thread_id

 INNER JOIN performance_schema.events_statements_

current stmt

 USING (thread_id)

 WHERE trx_started < NOW() - INTERVAL 10 SECOND\G

*************************** 1. row ***************************

 thread_id: 163

 processlist_id: 53

 trx_id: 296813

 event_id: 9

 trx_started: 2020-06-27 17:46:10

 age_seconds: 25

 trx_rows_locked: 2214

trx_rows_modified: 1100

 latency: 25.24 s

 rows_examined: 2201

 rows_affected: 0

 statement: UPDATE world.city SET Populati ... ion + MOD(ID, 2) +

SLEEP(0.01)

*************************** 2. row ***************************

 thread_id: 164

 processlist_id: 54

 trx_id: 283598406543136

 event_id: 8

 trx_started: 2020-06-27 17:46:10

 age_seconds: 25

 trx_rows_locked: 0

trx_rows_modified: 0

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

75

 latency: 25.14 s

 rows_examined: 0

 rows_affected: 0

 statement: SELECT COUNT(*) FROM world.city WHERE ID > SLEEP(0.01)

 2 rows in set (0.0021 sec)

You can join to the tables and choose the columns of relevance for your

investigation.

Related to the INNODB_TRX view is the transaction list in the InnoDB monitor.

 InnoDB Monitor
The InnoDB monitor is a kind of Swiss army knife of InnoDB information and also

includes information about transactions. The TRANSACTIONS section in the output from

the InnoDB monitor is dedicated to transactional information. This information does

include not only a list of transactions but also the history list length. Listing 3-4 shows

an excerpt of the InnoDB monitor with the example of the transaction section taken just

after the previous output from the INNODB_TRX view.

Listing 3-4. Transaction information from the InnoDB monitor

-- Investigation #4

Connection 3> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************

 Type: InnoDB

 Name:

Status:

=====================================

2020-06-27 17:46:36 0x5784 INNODB MONITOR OUTPUT

=====================================

Per second averages calculated from the last 20 seconds

...

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

76

TRANSACTIONS

Trx id counter 296814

Purge done for trx's n:o < 296813 undo n:o < 0 state: running but idle

History list length 1

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 283598406541472, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 283598406540640, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 283598406539808, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 283598406538976, not started

0 lock struct(s), heap size 1136, 0 row lock(s)

---TRANSACTION 296813, ACTIVE 26 sec fetching rows

mysql tables in use 1, locked 1

15 lock struct(s), heap size 1136, 2333 row lock(s), undo log entries 1160

MySQL thread id 53, OS thread handle 23748, query id 56574 localhost ::1

root User sleep

UPDATE world.city SET Population = Population + MOD(ID, 2) + SLEEP(0.01)

...

The top of the TRANSACTIONS section shows the current value of the transaction id

counter followed by information of what has been purged from the undo logs. It shows

that the undo logs for transaction ids less than 296813 have been purged. The further

this purge is behind, the larger the history list length (in the third line of the section) is.

Reading the history list length from the InnoDB monitor output is the traditional way to

get the length of the history list. In the next section, it will be shown how to get the value

in a better way when used for monitoring purposes.

The rest of the section is a list of transactions. Notice that while the output is

generated with the same two active transactions as were found in INNODB_TRX, the

transaction list only includes one active transaction (the one for the UPDATE statement).

In MySQL 5.7 and later, read-only non-locking transactions are not included in the

InnoDB monitor transaction list. For this reason, it is better to use the INNODB_TRX view,

if you need to include all active transactions.

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

77

As mentioned, there is an alternative way to get the history list length. You need to

use the InnoDB metrics for this.

 INNODB_METRICS and sys.metrics
The InnoDB monitor report is useful for a database administrator to get an overview of

what is going on in InnoDB, but for monitoring it is not as useful as it requires parsing

to get out the data in a way monitoring can use it. You saw earlier in the chapter how

the information about the transactions can be obtained from the information_schema.

INNODB_TRX view, but how about metrics such as the history list length?

The InnoDB metric system includes several metrics that show information about the

transactions in the information_schema.INNODB_METRICS view. These metrics are all

located in the transaction subsystem. Listing 3-5 shows a list of the transaction metrics,

whether they are enabled by default, and a brief comment explaining what the metric

measures.

Listing 3-5. InnoDB metrics related to transactions

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 56 166 6

-- Connection 1

Connection 1> SELECT NAME, COUNT, STATUS, COMMENT

 FROM information_schema.INNODB_METRICS

 WHERE SUBSYSTEM = 'transaction'\G

*************************** 1. row ***************************

 NAME: trx_rw_commits

 COUNT: 0

 STATUS: disabled

COMMENT: Number of read-write transactions committed

*************************** 2. row ***************************

 NAME: trx_ro_commits

 COUNT: 0

 STATUS: disabled

COMMENT: Number of read-only transactions committed

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

78

*************************** 3. row ***************************

 NAME: trx_nl_ro_commits

 COUNT: 0

 STATUS: disabled

COMMENT: Number of non-locking auto-commit read-only transactions committed

*************************** 4. row ***************************

 NAME: trx_commits_insert_update

 COUNT: 0

 STATUS: disabled

COMMENT: Number of transactions committed with inserts and updates

*************************** 5. row ***************************

 NAME: trx_rollbacks

 COUNT: 0

 STATUS: disabled

COMMENT: Number of transactions rolled back

*************************** 6. row ***************************

 NAME: trx_rollbacks_savepoint

 COUNT: 0

 STATUS: disabled

COMMENT: Number of transactions rolled back to savepoint

*************************** 7. row ***************************

 NAME: trx_rollback_active

 COUNT: 0

 STATUS: disabled

COMMENT: Number of resurrected active transactions rolled back

*************************** 8. row ***************************

 NAME: trx_active_transactions

 COUNT: 0

 STATUS: disabled

COMMENT: Number of active transactions

*************************** 9. row ***************************

 NAME: trx_on_log_no_waits

 COUNT: 0

 STATUS: disabled

COMMENT: Waits for redo during transaction commits

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

79

*************************** 10. row ***************************

 NAME: trx_on_log_waits

 COUNT: 0

 STATUS: disabled

COMMENT: Waits for redo during transaction commits

*************************** 11. row ***************************

 NAME: trx_on_log_wait_loops

 COUNT: 0

 STATUS: disabled

COMMENT: Waits for redo during transaction commits

*************************** 12. row ***************************

 NAME: trx_rseg_history_len

 COUNT: 9

 STATUS: enabled

COMMENT: Length of the TRX_RSEG_HISTORY list

*************************** 13. row ***************************

 NAME: trx_undo_slots_used

 COUNT: 0

 STATUS: disabled

COMMENT: Number of undo slots used

*************************** 14. row ***************************

 NAME: trx_undo_slots_cached

 COUNT: 0

 STATUS: disabled

COMMENT: Number of undo slots cached

*************************** 15. row ***************************

 NAME: trx_rseg_current_size

 COUNT: 0

 STATUS: disabled

COMMENT: Current rollback segment size in pages

15 rows in set (0.0012 sec)

The most important of these metrics is trx_rseg_history_len which is the history

list length. This is also the only metric that is enabled by default. The metrics related

to commits and rollbacks can be used to determine how many read-write, read-only,

and non-locking read-only transactions you have and how often they are committed

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

80

and rolled back. Many rollbacks suggest there is a problem. If you suspect the redo log

is a bottleneck, the trx_on_log_% metrics can be used to get a measure of how much

transactions are waiting for the redo log during transaction commits.

Tip You enable InnoDB metrics with the innodb_monitor_enable option and
disable them with innodb_monitor_disable. This can be done dynamically.

An alternative and convenient way to query the InnoDB metrics is to use the sys.

metrics view which also includes the global status variables. Listing 3-6 shows an

example of using the sys.metrics view to obtain the current values and whether the

metric is enabled.

Listing 3-6. Using the sys.metrics view to get the transaction metrics

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 52 125 6

-- Connection 1

Connection 1> SELECT Variable_name AS Name,

 Variable_value AS Value,

 Enabled

 FROM sys.metrics

 WHERE Type = 'InnoDB Metrics - transaction';

+---------------------------+-------+---------+

| Name | Value | Enabled |

+---------------------------+-------+---------+

| trx_active_transactions | 0 | NO |

| trx_commits_insert_update | 0 | NO |

| trx_nl_ro_commits | 0 | NO |

| trx_on_log_no_waits | 0 | NO |

| trx_on_log_wait_loops | 0 | NO |

| trx_on_log_waits | 0 | NO |

| trx_ro_commits | 0 | NO |

| trx_rollback_active | 0 | NO |

| trx_rollbacks | 0 | NO |

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

81

| trx_rollbacks_savepoint | 0 | NO |

| trx_rseg_current_size | 0 | NO |

| trx_rseg_history_len | 16 | YES |

| trx_rw_commits | 0 | NO |

| trx_undo_slots_cached | 0 | NO |

| trx_undo_slots_used | 0 | NO |

+---------------------------+-------+---------+

15 rows in set (0.0089 sec)

This shows that the history list length is 16 which is a good low value, so there is next

to none overhead from the undo logs. The rest of the metrics are disabled.

 Summary
This chapter has covered how you can obtain information about InnoDB transactions.

The primary source of detailed information is the INNODB_TRX view in the Information

Schema which includes details such as when the transaction was started, the number

of locked and modified rows, etc. You can optionally join on the Performance Schema

tables to get more information about the transaction.

You can also use the InnoDB monitor to get information about locking transactions;

however, in general, it is preferred to use the INNODB_TRX view. If you are looking for

higher-level aggregate statistics, you can use the information_schema.INNODB_METRICS

view or alternatively the sys.metrics view. The most commonly used metric is trx_

rseg_history_len which shows the history list length.

Thus far, the discussion of transaction information has been about aggregate

statistics either for all transactions or individual transactions. If you want to go deeper

into what work a transaction has done, you need to use the Performance Schema as

discussed in the next chapter.

ChAPTer 3 MOnITOrIng InnODB TrAnSACTIOnS

83
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_4

CHAPTER 4

Transactions in the
Performance Schema
The Performance Schema supports transaction monitoring in MySQL 5.7 and later, and

it is enabled by default in MySQL 8. There are not many transaction details other than

related to XA transactions and savepoints available in the Performance Schema that

cannot be obtained from the INNODB_TRX view in the Information Schema. However, the

Performance Schema transaction events have the advantage that you can combine them

with other event types such as statements to get information about the work done by a

transaction. This is the main focus of this chapter. Additionally, the Performance Schema

offers summary tables with aggregate statistics.

 Transaction Events and Their Statements
The main tables for investigating transactions in the Performance Schema are the

transaction event tables. There are three tables for recording current or recent

transactions: events_transactions_current, events_transactions_history, and

events_transactions_history_long. They have the columns as summarized in Table 4-1.

https://doi.org/10.1007/978-1-4842-6652-6_4#DOI

84

Table 4-1. The columns of the non-summary transaction event tables

Column/Data Type Description

THREAD_ID

bigint unsigned

The Performance Schema thread id of the connection executing the

transaction.

EVENT_ID

bigint unsigned

The event id for the event. You can use the event id to order the events

for a thread or as a foreign key together with the thread id between

event tables.

END_EVENT_ID

bigint unsigned

The event id when the transaction completed. If the event id is NULL, the

transaction is still ongoing.

EVENT_NAME

varchar(128)

The transaction event name. Currently this column always has the value

transaction.

STATE

enum

The state of the transaction. Possible values are ACTIVE, COMMITTED,

and ROLLED BACK.

TRX_ID

bigint unsigned

This is currently unused and will always be NULL.

GTID

varchar(64)

The GTID for the transaction. When the GTID is automatically determined

(the usual), AUTOMATIC is returned. This is the same as the gtid_next

variable for the connection executing the transaction.

XID_FORMAT_ID

int

For XA transactions, the format id.

XID_GTRID

varchar(130)

For XA transactions, the gtrid value.

XID_BQUAL

varchar(130)

For XA transactions, the bqual value.

XA_STATE

varchar(64)

For a XA transaction, the state of the transaction. This can be ACTIVE,

IDLE, PREPARED, ROLLED BACK, or COMMITTED.

SOURCE

varchar(64)

The source code file and line number where the event was recorded.

TIMER_START

bigint unsigned

The time in picoseconds when the event started.

(continued)

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

85

Table 4-1. (continued)

Column/Data Type Description

TIMER_END

bigint unsigned

The time in picoseconds when the event completed. If the transaction

has not completed yet, the value corresponds to the current time.

TIMER_WAIT

bigint unsigned

The total time in picoseconds it took to execute the event. If the

event has not completed yet, the value corresponds to how long the

transaction has been active.

ACCESS_MODE

enum

Whether the transaction is in read-only (READ ONLY) or in read-write

(READ WRITE) mode.

ISOLATION_LEVEL

varchar(64)

The transaction isolation level for the transaction.

AUTOCOMMIT

enum

Whether the transaction is autocommitting based on the autocommit

option and whether an explicit transaction has been started. Possible

values are NO and YES.

NUMBER_OF_

SAVEPOINTS

bigint unsigned

The number of savepoints created in the transaction.

NUMBER_OF_ROLLBACK_

TO_SAVEPOINT

bigint unsigned

The number of times the transaction has rolled back to a savepoint.

NUMBER_OF_RELEASE_

SAVEPOINT

bigint unsigned

The number of times the transaction has released a savepoint.

OBJECT_INSTANCE_

BEGIN

bigint unsigned

This field is currently unused and always set to NULL.

NESTING_EVENT_ID

bigint unsigned

The event id of the event that triggered the transaction.

NESTING_EVENT_TYPE

enum

The event type of the event that triggered the transaction.

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

86

If you are working with XA transactions, the transaction event tables are great when

you need to recover a transaction as the format id, gtrid, and bqual values are directly

available from the tables, unlike for the XA RECOVER statement where you have to parse

the output. In the same way, if you work with savepoints, you can get statistics on the

savepoint usage. Otherwise, the information is very similar to what is available in the

information_schema.INNODB_TRX view.

For an example of using the events_transactions_current table, you can start two

transactions as shown in Listing 4-1.

Listing 4-1. Example transactions

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 57 140 6

-- 2 58 141 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0004 sec)

Connection 1> UPDATE world.city SET Population = 5200000 WHERE ID = 130;

Connection 1> UPDATE world.city SET Population = 4900000 WHERE ID = 131;

Connection 1> UPDATE world.city SET Population = 2400000 WHERE ID = 132;

Connection 1> UPDATE world.city SET Population = 2000000 WHERE ID = 133;

-- Connection 2

Connection 2> XA START 'abc', 'def', 1;

Connection 2> UPDATE world.city SET Population = 900000 WHERE ID = 3805;

The first transaction is a normal transaction that updates the population of

several cities, and the second transaction is an XA transaction. Listing 4-2 shows an

example output of the events_transactions_current table listing the currently active

transactions.

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

87

Listing 4-2. Using the events_transactions_current table

-- Investigation #1

-- Connection 3

Connection 3> SELECT *

 FROM performance_schema.events_transactions_current

 WHERE state = 'ACTIVE'\G

*************************** 1. row ***************************

 THREAD_ID: 140

 EVENT_ID: 8

 END_EVENT_ID: NULL

 EVENT_NAME: transaction

 STATE: ACTIVE

 TRX_ID: NULL

 GTID: AUTOMATIC

 XID_FORMAT_ID: NULL

 XID_GTRID: NULL

 XID_BQUAL: NULL

 XA_STATE: NULL

 SOURCE: transaction.cc:209

 TIMER_START: 72081362554600000

 TIMER_END: 72161455792800000

 TIMER_WAIT: 80093238200000

 ACCESS_MODE: READ WRITE

 ISOLATION_LEVEL: REPEATABLE READ

 AUTOCOMMIT: NO

 NUMBER_OF_SAVEPOINTS: 0

NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0

 NUMBER_OF_RELEASE_SAVEPOINT: 0

 OBJECT_INSTANCE_BEGIN: NULL

 NESTING_EVENT_ID: 7

 NESTING_EVENT_TYPE: STATEMENT

*************************** 2. row ***************************

 THREAD_ID: 141

 EVENT_ID: 8

 END_EVENT_ID: NULL

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

88

 EVENT_NAME: transaction

 STATE: ACTIVE

 TRX_ID: NULL

 GTID: AUTOMATIC

 XID_FORMAT_ID: 1

 XID_GTRID: abc

 XID_BQUAL: def

 XA_STATE: ACTIVE

 SOURCE: transaction.cc:209

 TIMER_START: 72081766957700000

 TIMER_END: 72161455799300000

 TIMER_WAIT: 79688841600000

 ACCESS_MODE: READ WRITE

 ISOLATION_LEVEL: REPEATABLE READ

 AUTOCOMMIT: NO

 NUMBER_OF_SAVEPOINTS: 0

NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0

 NUMBER_OF_RELEASE_SAVEPOINT: 0

 OBJECT_INSTANCE_BEGIN: NULL

 NESTING_EVENT_ID: 7

 NESTING_EVENT_TYPE: STATEMENT

2 rows in set (0.0007 sec)

The transaction in row 1 is a regular transaction, whereas the transaction in row 2 is

an XA transaction. Both transactions were started by a statement which can be seen from

the nesting event type. If you want to find the statement that triggered the transaction,

you can use that to query the events_statements_history table like

-- Investigation #2

Connection 3> SELECT sql_text

 FROM performance_schema.events_statements_history

 WHERE thread_id = 140

 AND event_id = 7\G

*************************** 1. row ***************************

sql_text: start transaction

1 row in set (0.0434 sec)

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

89

This shows that the transaction executed by thread_id = 140 was started using

a START TRANSACTION statement. Since the events_statements_history table only

includes the last ten statements for the connection, it is not guaranteed that the

statement that started the transaction is still in the history table. If you are looking at

a single- statement transaction or the first statement (while it is still executing) when

autocommit is disabled, you will need to query the events_statements_current table

instead.

The relationship between transactions and statements also goes the other way.

Given a transaction event id and the thread id, you can query the last ten statements

executed for that transaction using the statement event history and current tables.

Listing 4-3 shows an example for thread_id = 140 and transaction EVENT_ID = 8 (from

row 1 of Listing 4-2) where both the statement starting the transaction and subsequent

statements are included.

Listing 4-3. Finding the last ten statements executed in a transaction

-- Investigation #4

Connection 3> SET @thread_id = 140,

 @event_id = 8,

 @nesting_event_id = 7;

Query OK, 0 rows affected (0.0007 sec)

-- Investigation #6

Connection 3> SELECT event_id, sql_text,

 FORMAT_PICO_TIME(timer_wait) AS latency,

 IF(end_event_id IS NULL, 'YES', 'NO') AS current

 FROM ((SELECT event_id, end_event_id,

 timer_wait,

 sql_text, nesting_event_id,

 nesting_event_type

 FROM performance_schema.events_statements_current

 WHERE thread_id = @thread_id

) UNION (

 SELECT event_id, end_event_id,

 timer_wait,

 sql_text, nesting_event_id,

 nesting_event_type

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

90

 FROM performance_schema.events_statements_history

 WHERE thread_id = @thread_id

)

) events

 WHERE (nesting_event_type = 'TRANSACTION'

 AND nesting_event_id = @event_id)

 OR event_id = @nesting_event_id

 ORDER BY event_id DESC\G

*************************** 1. row ***************************

event_id: 12

sql_text: UPDATE world.city SET Population = 2000000 WHERE ID = 133

 latency: 384.00 us

 current: NO

*************************** 2. row ***************************

event_id: 11

sql_text: UPDATE world.city SET Population = 2400000 WHERE ID = 132

 latency: 316.20 us

 current: NO

*************************** 3. row ***************************

event_id: 10

sql_text: UPDATE world.city SET Population = 4900000 WHERE ID = 131

 latency: 299.30 us

 current: NO

*************************** 4. row ***************************

event_id: 9

sql_text: UPDATE world.city SET Population = 5200000 WHERE ID = 130

 latency: 176.95 ms

 current: NO

*************************** 5. row ***************************

event_id: 7

sql_text: start transaction

 latency: 223.20 us

 current: NO

5 rows in set (0.0016 sec)

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

91

The subquery (a derived table) finds all statement events for the thread from the

events_statements_current and events_statements_history tables. It is necessary

to include the current events as there may be an ongoing statement for the transaction.

The statements are filtered by either being a child of the transaction or the nesting event

for the transaction (event_id = 7). This will include all statements beginning with the

one starting the transactions. There will be up to 11 statements if there is an ongoing

statement and otherwise up to ten.

The end_event_id is used to determine whether the statement is currently

executing, and the statements are ordered in reverse using the event_id, so the most

recent statement is in row 1 and the oldest (the START TRANSACTION statement) in row 5.

This type of query is not only useful to investigate transactions still executing

queries. It can also be very useful when you encounter an idle transaction and you want

to know what the transaction did before it was left abandoned. Another related way

to look for active transactions is to use the sys.session view which uses the events_

transactions_current table to include information about the transactional state for

each connection. Listing 4-4 shows an example of querying for active transactions

excluding the row for the connection executing the query.

Listing 4-4. Finding active transactions with sys.session

-- Investigation #7

Connection 3> SELECT *

 FROM sys.session

 WHERE trx_state = 'ACTIVE'

 AND conn_id <> CONNECTION_ID()\G

*************************** 1. row ***************************

 thd_id: 140

 conn_id: 57

 user: mysqlx/worker

 db: NULL

 command: Sleep

 state: NULL

 time: 449

 current_statement: UPDATE world.city SET Population = 2000000

WHERE ID = 133

 statement_latency: NULL

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

92

 progress: NULL

 lock_latency: 111.00 us

 rows_examined: 1

 rows_sent: 0

 rows_affected: 1

 tmp_tables: 0

 tmp_disk_tables: 0

 full_scan: NO

 last_statement: UPDATE world.city SET Population = 2000000

WHERE ID = 133

last_statement_latency: 384.00 us

 current_memory: 228.31 KiB

 last_wait: NULL

 last_wait_latency: NULL

 source: NULL

 trx_latency: 7.48 min

 trx_state: ACTIVE

 trx_autocommit: NO

 pid: 30936

 program_name: mysqlsh

*************************** 2. row ***************************

 thd_id: 141

 conn_id: 58

 user: mysqlx/worker

 db: NULL

 command: Sleep

 state: NULL

 time: 449

 current_statement: UPDATE world.city SET Population = 900000

WHERE ID = 3805

 statement_latency: NULL

 progress: NULL

 lock_latency: 387.00 us

 rows_examined: 1

 rows_sent: 0

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

93

 rows_affected: 1

 tmp_tables: 0

 tmp_disk_tables: 0

 full_scan: NO

 last_statement: UPDATE world.city SET Population = 900000

WHERE ID = 3805

last_statement_latency: 49.39 ms

 current_memory: 70.14 KiB

 last_wait: NULL

 last_wait_latency: NULL

 source: NULL

 trx_latency: 7.48 min

 trx_state: ACTIVE

 trx_autocommit: NO

 pid: 30936

 program_name: mysqlsh

2 rows in set (0.0422 sec)

This shows that the transaction in the first row has been active for more than 7

minutes and it is 449 seconds (7.5 minutes) since the last query was executed (your

values will differ). The last_statement can be used to determine the last query

executed by the connection. This is an example of an abandoned transaction which

prevents InnoDB from purging its undo logs. The most common causes of abandoned

transactions are a database administrator starting a transaction interactively and getting

distracted or that autocommit is disabled and it is not realized a transaction was started.

Caution If you disable autocommit, be careful always to commit or roll back
at the end of the work. Some connectors disable autocommit by default, so be
aware that your application may not be using the server default.

You can roll the transactions back to avoid changing any data (if you use the MySQL

Shell script to reproduce the example, this is done automatically when hitting enter

without an answer for the next investigation). For the first (normal) transaction

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

94

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0303 sec)

And for the XA transaction:

-- Connection 2

Connection 2> XA END 'abc', 'def', 1;

Query OK, 0 rows affected (0.0002 sec)

Connection 2> XA ROLLBACK 'abc', 'def', 1;

Query OK, 0 rows affected (0.0308 sec)

Another way the Performance Schema tables are useful for analyzing transactions is

to use the summary tables to obtain aggregate data.

 Transaction Summary Tables
In the same way as there are statement summary tables that can be used to get reports of

the statements that are executed, there are transaction summary tables that can be used

to analyze the use of transactions. While they are not quite as useful as their statement

counterparts, they do offer insight into which connections and accounts that use

transactions in different ways.

There are five transaction summary tables grouping the data globally or by account,

host, thread, or user. All of the summaries also group by the event name, but as currently

there is only one transaction event (transaction), it is a nil operation. The tables are

• events_transactions_summary_global_by_event_name: All

transactions aggregated. There is only a single row in this table.

• events_transactions_summary_by_account_by_event_name: The

transactions grouped by username and hostname.

• events_transactions_summary_by_host_by_event_name: The

transactions grouped by hostname of the account.

• events_transactions_summary_by_thread_by_event_name: The

transactions grouped by thread. Only currently existing threads are

included.

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

95

• events_transactions_summary_by_user_by_event_name: The

events grouped by the username part of the account.

Each table includes the columns that the transaction statistics are grouped by

and three groups of columns: total, for read-write transactions, and for read-only

transactions. For each of these three groups of columns, there is the total number of

transactions as well as the total, minimum, average, and maximum latencies. Listing 4-5

shows an example of the data from the events_transactions_summary_global_by_

event_name table.

Listing 4-5. The events_transactions_summary_global_by_event_name table

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 60 143 6

-- Connection 1

Connection 1> SELECT *

 FROM performance_schema.events_transactions_summary_global_by_

event_name\G

*************************** 1. row ***************************

 EVENT_NAME: transaction

 COUNT_STAR: 40485

 SUM_TIMER_WAIT: 90259064465300000

 MIN_TIMER_WAIT: 4800000

 AVG_TIMER_WAIT: 2229444500000

 MAX_TIMER_WAIT: 62122342944500000

 COUNT_READ_WRITE: 40483

SUM_TIMER_READ_WRITE: 90230783742700000

MIN_TIMER_READ_WRITE: 4800000

AVG_TIMER_READ_WRITE: 2228856100000

MAX_TIMER_READ_WRITE: 62122342944500000

 COUNT_READ_ONLY: 2

 SUM_TIMER_READ_ONLY: 28280722600000

 MIN_TIMER_READ_ONLY: 9561820600000

 AVG_TIMER_READ_ONLY: 14140361300000

 MAX_TIMER_READ_ONLY: 18718902000000

1 row in set (0.0007 sec)

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

96

It may surprise you when you study the output how many transactions there are,

particularly read-write transactions. Remember that when querying an InnoDB table,

everything is a transaction even if you have not explicitly specified one. So even a

simple SELECT statement querying a single row counts as a transaction. Regarding the

distribution between read-write and read-only transactions, then the Performance

Schema only considers a transaction read-only if you explicitly started it as such

START TRANSACTION READ ONLY;

When InnoDB determines that an autocommitting single-statement transaction can

be treated as a read-only transaction, that is still counting toward the read-write statistics

in the Performance Schema.

 Summary
In this chapter, the transaction-related tables in the Performance Schema have been

introduced, and it has been shown how you can join to other tables. First the three

tables with one row per transaction event, events_transactions_current, events_

transactions_history, and events_transactions_history_long, were discussed,

and then they were used to join on the statement event tables to obtain the most recent

statements executed in a transaction. Finally, the transaction summary tables were

covered.

You have now covered the most important resources for monitoring locks and

transactions, and it is time to go into detail about locks. First, you will learn about the

lock access levels.

ChAPTer 4 TrAnSACTIonS In The PerFormAnCe SChemA

97
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_5

CHAPTER 5

Lock Access Levels
In the first chapter where locks were introduced, there was no mention of how locks

work. It would be possible to implement locking in the database by just allowing one

query access at a time irrespective of what kind of work will be done. However, this

would be woefully inefficient.

Keeping to the analogy of a traffic light, another approach is grant access based on

what work will be done. A traffic light grants access to the intersection not just to one car

at a time but to all driving in the same direction. Similarly, in a database, you distinguish

between shared (read) and exclusive (write) access. The access levels do what their

names suggest. A shared lock allows other connections to also get a shared lock. This is

the most permissive lock access level. An exclusive lock only allows that one connection

to get the lock. A shared lock is also known as a read lock, and an exclusive lock is also

known as a write lock.

Note The lock access level is also sometimes called the lock type, but since that
can be confused with the lock granularity, which is also sometimes called a type,
the term lock access level is used here.

MySQL also has a concept called intention locks which specify the intention of a

transaction. An intention lock can be either shared or exclusive.

The rest of this chapter goes into more detail about shared and exclusive locks as

well as intention locks.

 Shared Locks
When a thread needs to protect a resource, but it is not going to change the resource,

it can use a shared lock to prevent other threads from changing the resource while still

allowing them to access the same resource. This is the most commonly used access level.

https://doi.org/10.1007/978-1-4842-6652-6_5#DOI

98

Whenever a statement selects from a table, MySQL will take a shared lock on the

tables involved in the query. For the data locks, it works differently as InnoDB does not

in general acquire a shared lock when reading a row. That only happens when a shared

lock is explicitly requested, in the SERIALIZABLE transaction isolation level, or it is

required by the workflow such as when foreign keys are involved.

You can explicitly request a shared lock on the rows accessed by a query by adding

the FOR SHARE or its synonym LOCK IN SHARE MODE as shown in Listing 5-1.

Listing 5-1. Example of obtaining a shared lock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 36 80 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT * FROM world.city WHERE ID = 130 FOR SHARE;

+-----+--------+-------------+-----------------+------------+

| ID | Name | CountryCode | District | Population |

+-----+--------+-------------+-----------------+------------+

| 130 | Sydney | AUS | New South Wales | 3276207 |

+-----+--------+-------------+-----------------+------------+

1 row in set (0.0047 sec)

Connection 1> SELECT object_type, object_schema, object_name,

 lock_type, lock_duration, lock_status

 FROM performance_schema.metadata_locks

 WHERE OWNER_THREAD_ID = PS_CURRENT_THREAD_ID()

 AND OBJECT_SCHEMA <> 'performance_schema'\G

*************************** 1. row ***************************

 object_type: TABLE

object_schema: world

 object_name: city

 lock_type: SHARED_READ

lock_duration: TRANSACTION

ChapTer 5 LoCk aCCess LeveLs

99

 lock_status: GRANTED

1 row in set (0.0005 sec)

Connection 1> SELECT engine, object_schema, object_name,

 lock_type, lock_mode, lock_status

 FROM performance_schema.data_locks

 WHERE THREAD_ID = PS_CURRENT_THREAD_ID()\G

*************************** 1. row ***************************

 engine: INNODB

object_schema: world

 object_name: city

 lock_type: TABLE

 lock_mode: IS

 lock_status: GRANTED

*************************** 2. row ***************************

 engine: INNODB

object_schema: world

 object_name: city

 lock_type: RECORD

 lock_mode: S,REC_NOT_GAP

 lock_status: GRANTED

2 rows in set (0.0005 sec)

mysql> ROLLBACK;

Query OK, 0 rows affected (0.0004 sec)

When querying the metadata_locks table, locks on the Performance Schema tables

are excluded as they are for the investigation query itself rather than for the previous

query. Here a shared lock is taken on world.city table as well as the record with the

primary key (the ID column) equals to 130. That they are shared locks can be seen from

the lock_type column in the metadata_locks table which has a value of SHARED_READ

and from the S in the lock_mode column of data_locks in the second row. The value

of IS for the first row from data_locks means it is a shared intention lock which will be

discussed in more detail shortly.

While shared locks do allow other queries also using shared locks to proceed, they

do block attempts to get an exclusive lock

ChapTer 5 LoCk aCCess LeveLs

100

 Exclusive Locks
Exclusive locks are the counterpart to shared lock. They ensure that only the thread

granted the exclusive lock can access the resource for the duration of the lock. As

exclusive locks are used to ensure only one thread is modifying a resource at a time, they

are also known as write locks.

Exclusive locks are mostly obtained by data definition language (DDL) statements

such as ALTER TABLE and when modifying data using data modification language (DML)

statements such as UPDATE and DELETE. As example of obtaining an exclusive lock and

the data in the lock tables can be found in Listing 5-2.

Listing 5-2. Example of obtaining exclusive locks

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 38 84 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0028 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Connection 1> SELECT object_type, object_schema, object_name,

 lock_type, lock_duration, lock_status

 FROM performance_schema.metadata_locks

 WHERE OWNER_THREAD_ID = PS_CURRENT_THREAD_ID()

 AND OBJECT_SCHEMA <> 'performance_schema'\G

*************************** 1. row ***************************

 object_type: TABLE

object_schema: world

 object_name: city

 lock_type: SHARED_WRITE

ChapTer 5 LoCk aCCess LeveLs

101

lock_duration: TRANSACTION

 lock_status: GRANTED

*************************** 2. row ***************************

 object_type: TABLE

object_schema: world

 object_name: country

 lock_type: SHARED_READ

lock_duration: TRANSACTION

 lock_status: GRANTED

2 rows in set (0.0008 sec)

Connection 1> SELECT engine, object_schema, object_name,

 lock_type, lock_mode, lock_status

 FROM performance_schema.data_locks

 WHERE THREAD_ID = PS_CURRENT_THREAD_ID()\G

*************************** 1. row ***************************

 engine: INNODB

object_schema: world

 object_name: city

 lock_type: TABLE

 lock_mode: IX

 lock_status: GRANTED

*************************** 2. row ***************************

 engine: INNODB

object_schema: world

 object_name: city

 lock_type: RECORD

 lock_mode: X,REC_NOT_GAP

 lock_status: GRANTED

2 rows in set (0.0005 sec)

mysql> ROLLBACK;

Query OK, 0 rows affected (0.3218 sec)

Most of the example reflects the example of obtaining shared locks, but there are also

some surprises. To start with the data_locks table, it shows an exclusive insert intention

(IX) lock on the table and an exclusive (X) record lock. This is as expected.

ChapTer 5 LoCk aCCess LeveLs

102

It becomes more complicated with the metadata_locks table where there are now

two table locks, a SHARED_WRITE lock on the city table and a SHARED_READ lock on the

country table. How can a lock both be shared and write at the same time, why is the lock

on the city table shared when it was modified, and why is there a lock on the country

table?

A SHARED_WRITE lock tells that the data is locked for updates but that the metadata

lock itself is a shared lock. The reason for this is that the metadata for the table is not

modified, so it is safe to allow other concurrent shared access to the table metadata.

Remember that the metadata_locks table does not care about the locks held on

individual records, so from a metadata perspective, the access to the city table is shared.

The metadata lock on the country table comes from the foreign key on the city table

to the country table. The shared lock prevents modifications to the country metadata,

such as dropping the column involved in the foreign key, while the transaction is still

ongoing. Chapter 10 will go into more detail about the effect of foreign keys on locking.

 Intention Locks
In the two examples this far in this chapter, there have been intention locks. What are

those? It is a lock that signals the intention of an InnoDB transaction and can be either

shared or exclusive. It can at first seem an unnecessary complication, but the intention

locks allow InnoDB to resolve the lock requests in order without blocking compatible

operations. The details are beyond the scope of this discussion. The important thing is

that you know that the intention locks exist, so when you see them you know where they

come from.

Intention locks from a more functional perspective are covered in Chapter 6, and a

related concept, insert intention locks are covered with the InnoDB locks in Chapter 7.

 Lock Compatibility
The lock compatibility matrix defines whether two lock requests conflict with each other.

The introduction of intention locks makes this a little more complex than saying that

shared locks are compatible with each other and exclusive locks are not compatible with

any other locks.

ChapTer 5 LoCk aCCess LeveLs

103

Two intention locks are always compatible with each other. This means that even if a

transaction has an intention exclusive lock, it will not prevent another transaction to take

an intention lock. It will however stop the other transaction from upgrading its intention

lock to a full lock. Table 5-1 shows the compatibility between the lock types. Shared locks

are denoted S and exclusive locks X. Intention locks are prefixed I, so IS is an intention

shared lock and IX is an intention exclusive lock.

Table 5-1. InnoDB lock compatibility

Exclusive (X) Intention Exclusive (IX) Shared (S) Intention Shared (IS)

Exclusive (X) ✘ ✘ ✘ ✘

Intention
Exclusive (IX)

✘ ✔ ✘ ✔

Shared (S) ✘ ✘ ✔ ✔

Intention
Shared (IS)

✘ ✔ ✔ ✔

In the table, a checkmark indicates that the two locks are compatible, whereas a

cross mark indicates the two locks are conflicting with each other. The only conflicts of

intention locks are with the exclusive and shared locks. An exclusive lock conflicts with

all other locks including both intention lock types. A shared lock conflicts only with an

exclusive lock and an intention exclusive lock.

This does sound fairly simple; however, this only applies to two of the same kind of

locks. When you start to include different locks at the InnoDB level, it becomes more

complex as will be discussed in Chapter 8 when lock contention is discussed.

This is all handled automatically by MySQL and InnoDB; however, you need to

understand these rules when investigating lock issues.

 Summary
This chapter has discussed the MySQL lock access levels. A lock can either be a shared

lock, an exclusive lock, an intention shared lock, or an intention exclusive lock.

A shared lock is for read access to a resource and allows multiple threads to access

the same resource concurrently. An exclusive lock on the other hand only allows a

single thread to access the resource at a time which makes it safe to update the resource.

ChapTer 5 LoCk aCCess LeveLs

104

Intention locks are an InnoDB concept that allows InnoDB to resolve lock requests with

less blocked requests as a result. All intention locks are compatible with each other, even

intention exclusive locks, but intention exclusive locks block shared locks.

In this as well as the previous chapters, you have also encountered examples of how

locks guard different resources such as tables and records. In the next chapter, it is time

to learn more about the high-level lock access types such as table and metadata locks.

ChapTer 5 LoCk aCCess LeveLs

105
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_6

CHAPTER 6

High-Level Lock Types
In the previous chapter, you learned about the shared and exclusive access levels. In

principle, you can make a locking system that does not consist of anything but one type

of lock that can either be shared or exclusive. It would however mean that it would have

to work at the instance level and thus be very poorly at allowing concurrent read-write

access to the data. In this and the next chapter, you will learn how there are many kinds

of locks depending on the resource they protect. While this does make locking much

more complex, it does also allow for a much fine grainer locks that leads to support for a

higher concurrency.

This chapter discusses the high-level locks in MySQL starting with the user-level

locks and going through the various types of locks that are handled at the MySQL level

(i.e., above the storage engine). Included are flush locks, metadata locks, explicit and

implicit table locks (which are an exception as they are handled by InnoDB), backup

locks, and log locks.

 User-Level Locks
User-level locks are an explicit lock type the application can use to protect, for example, a

workflow. They are not often used, but they can be useful for some complex tasks where

you want to serialize access. All user locks are exclusive locks and are obtained using a

name which can be up to 64 characters long.

You manipulate user-level locks with a set of functions:

• GET_LOCK(name, timeout): Obtains a lock by specifying the name

of the lock. The second argument is a timeout in seconds; if the lock

is not obtained within that time, the function returns 0. If the lock is

obtained, the return value is 1. If the timeout is negative, the function

will wait indefinitely for the lock to become available.

https://doi.org/10.1007/978-1-4842-6652-6_6#DOI

106

• IS_FREE_LOCK(name): Checks whether the named lock is available

or not. The function returns 1 if the lock is available and 0 if it is not

available.

• IS_USED_LOCK(name): This is the opposite of the IS_FREE_LOCK()

function. The function returns the connection id of the connection

holding the lock if the lock is in use (not available) and NULL if it is not

in use (available).

• RELEASE_ALL_LOCKS(): Releases all user-level locks held by the

connection. The return value is the number of locks released.

• RELEASE_LOCK(name): Releases the lock with the provided name. The

return value is 1 if the lock is released, 0 if the lock exists but is not

owned by the connection, or NULL if the lock does not exist.

It is possible to obtain multiple locks by invoking GET_LOCK() multiple times. If

you do that, be careful to ensure locks are obtained in the same order by all users as

otherwise a deadlock can occur. If a deadlock occurs, an ER_USER_LOCK_DEADLOCK error

(error code 3058) is returned. An example of this is shown in Listing 6-1.

Listing 6-1. A deadlock for user-level locks

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 322 617 6

-- 2 323 618 6

-- Connection 1

Connection 1> SELECT GET_LOCK('my_lock_1', -1);

+---------------------------+

| GET_LOCK('my_lock_1', -1) |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.0003 sec)

-- Connection 2

Connection 2> SELECT GET_LOCK('my_lock_2', -1);

Chapter 6 high-LeveL LoCk types

107

+---------------------------+

| GET_LOCK('my_lock_2', -1) |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.0003 sec)

Connection 2> SELECT GET_LOCK('my_lock_1', -1);

-- Connection 1

Connection 1> SELECT GET_LOCK('my_lock_2', -1);

ERROR: 3058: Deadlock found when trying to get user-level lock; try rolling

back transaction/releasing locks and restarting lock acquisition.

When Connection 2 attempts to get the my_lock_1 lock, the statement will block

until Connection 1 attempts to get the my_lock_2 lock triggering the deadlock. If you

obtain multiple locks, you should be prepared to handle deadlocks. Note that for user-

level locks, a deadlock does not trigger a rollback of the transaction.

The granted and pending user-level locks can be found in the performance_schema.

metadata_locks table with the OBJECT_TYPE column set to USER LEVEL LOCK as shown in

Listing 6-2. The locks listed assume you left the system as it was at the time the deadlock

in Listing 6-1 was triggered. Note that some values such as OBJECT_INSTANCE_BEGIN will

be different for you and you will have to change the ids for owner_thread_id in the WHERE

clause to match yours from Listing 6-1.

Listing 6-2. Listing user-level locks

-- Investigation #1

-- Connection 3

Connection 3> SELECT *

 FROM performance_schema.metadata_locks

 WHERE object_type = 'USER LEVEL LOCK'

 AND owner_thread_id IN (617, 618)\G

*************************** 1. row ***************************

 OBJECT_TYPE: USER LEVEL LOCK

 OBJECT_SCHEMA: NULL

 OBJECT_NAME: my_lock_1

 COLUMN_NAME: NULL

Chapter 6 high-LeveL LoCk types

108

OBJECT_INSTANCE_BEGIN: 2124404669104

 LOCK_TYPE: EXCLUSIVE

 LOCK_DURATION: EXPLICIT

 LOCK_STATUS: GRANTED

 SOURCE: item_func.cc:5067

 OWNER_THREAD_ID: 617

 OWNER_EVENT_ID: 8

*************************** 2. row ***************************

 OBJECT_TYPE: USER LEVEL LOCK

 OBJECT_SCHEMA: NULL

 OBJECT_NAME: my_lock_2

 COLUMN_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2124463901664

 LOCK_TYPE: EXCLUSIVE

 LOCK_DURATION: EXPLICIT

 LOCK_STATUS: GRANTED

 SOURCE: item_func.cc:5067

 OWNER_THREAD_ID: 618

 OWNER_EVENT_ID: 8

*************************** 3. row ***************************

 OBJECT_TYPE: USER LEVEL LOCK

 OBJECT_SCHEMA: NULL

 OBJECT_NAME: my_lock_1

 COLUMN_NAME: NULL

OBJECT_INSTANCE_BEGIN: 2124463901088

 LOCK_TYPE: EXCLUSIVE

 LOCK_DURATION: EXPLICIT

 LOCK_STATUS: PENDING

 SOURCE: item_func.cc:5067

 OWNER_THREAD_ID: 618

 OWNER_EVENT_ID: 9

3 rows in set (0.0015 sec)

The OBJECT_TYPE for user-level locks is USER LEVEL LOCK, and the lock duration

is EXPLICIT as it is up to the user or application to release the lock again. In row 1, the

connection with Performance Schema thread id 617 has been granted the my_lock_1

Chapter 6 high-LeveL LoCk types

109

lock, and in row 3 thread id 618 is waiting (pending) for it to be granted. Thread id

618 also has a granted lock which is included in row 2. Once you are done with the

investigation, remember to release the locks, for example, executing SELECT RELEASE_

ALL_LOCKS() first in connection 1 and then in connection 2 (this happens automatically

when exiting the workload using the MySQL Shell concurrency_book module).

The next level of locks involves non-data table-level locks. The first of these that will

be discussed is the flush lock.

 Flush Locks
A flush lock will be familiar to most who have been involved in taking backups. It is taken

when you use the FLUSH TABLES statement and last for the duration of the statement

unless you add WITH READ LOCK in which case a shared (read) lock is held until the lock

is explicitly released. An implicit table flush is also triggered at the end of the ANALYZE

TABLE statement. The flush lock is a table-level lock. The read lock taken with FLUSH

TABLES WITH READ LOCK is discussed later under explicit table locks.

A common cause of lock issues for the flush lock is long-running queries. A FLUSH

TABLES statement cannot flush a table as long as there is a query that has the table open.

This means that if you execute a FLUSH TABLES statement while there is a long-running

query using one or more of the tables being flushed, then the FLUSH TABLES statement

will block all other statements needing any of those tables until the lock situation has

been resolved.

Flush locks are subject to the lock_wait_timeout setting. If it takes more than

lock_wait_timeout seconds to obtain the lock, MySQL will abandon the lock. The same

applies if the FLUSH TABLES statement is killed. However, due to the internals of MySQL,

a lower-level lock called the table definition cache (TDC) version lock cannot always be

released until the long-running query completes.1 That means that the only way to be

sure the lock problem is resolved is to kill the long-running query, but be aware that if

the query has changed many rows, it may take a long time to roll back the query.

When there is lock contention around the flush lock, both the FLUSH TABLES statement

and the queries started subsequently will have the state set to “Waiting for table flush.”

Listing 6-3 shows an example of this involving three queries. If you are reproducing the

scenario yourself (as opposed to using the MySQL Shell concurrency_book module),

1 https://bugs.mysql.com/bug.php?id=44884

Chapter 6 high-LeveL LoCk types

https://bugs.mysql.com/bug.php?id=44884

110

then you can change the argument to SLEEP() in connection 1 to give yourself more time

to complete the example.

Listing 6-3. Example of waiting for a flush lock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 375 691 6

-- 2 376 692 6

-- 3 377 693 6

-- 4 378 694 6

-- Connection 1

Connection 1> SELECT city.*, SLEEP(3) FROM world.city WHERE ID = 130;

-- Connection 2

Connection 2> FLUSH TABLES world.city;

-- Connection 3

Connection 3> SELECT * FROM world.city WHERE ID = 201;

-- Connection 4

-- Query sys.session for the three threads involved in the lock situation

Connection 4> SELECT thd_id, conn_id, state,

 current_statement

 FROM sys.session

 WHERE current_statement IS NOT NULL

 AND thd_id IN (691, 692, 693)

 ORDER BY thd_id\G

*************************** 1. row ***************************

 thd_id: 691

 conn_id: 375

 state: User sleep

current_statement: SELECT city.*, SLEEP(3) FROM world.city WHERE ID = 130

*************************** 2. row ***************************

 thd_id: 692

 conn_id: 376

Chapter 6 high-LeveL LoCk types

111

 state: Waiting for table flush
current_statement: FLUSH TABLES world.city
*************************** 3. row ***************************

 thd_id: 693

 conn_id: 377

 state: Waiting for table flush
current_statement: SELECT * FROM world.city WHERE ID = 201

3 rows in set (0.0586 sec)

The example uses the sys.session view; similar results can be obtained using

performance_schema.threads and SHOW PROCESSLIST. In order to reduce the output to

only include the queries of relevance for the flush lock discussion, the WHERE clause is set

to only include the threads ids of the first three connections.

The connection with conn_id = 375 is executing a slow query that uses the world.

city table (a SLEEP(3) was used to ensure it took enough time to execute the statements

for the other connections). In the meantime, conn_id = 376 executed a FLUSH TABLES

statement for the world.city table. Because the first query still has the table open (it is

released once the query completes), the FLUSH TABLES statement ends up waiting for the

table flush lock. Finally, conn_id = 377 attempts to query the table and thus must wait

for the FLUSH TABLES statement.

Another non-data table lock is a metadata lock.

 Metadata Locks
Metadata locks are one of the newer lock types in MySQL. They were introduced in

MySQL 5.5, and their purpose is to protect the schema, so it does not get changed while

queries or transactions rely on the schema to be unchanged. Metadata locks work at the

table level, but they should be considered as an independent lock type to table locks as

they do not protect the data in the tables.

SELECT statements and DML queries take a shared metadata lock, whereas DDL

statements take an exclusive lock. A connection takes a metadata lock on a table when

the table is first used and keeps the lock until the end of the transaction. While the

metadata lock is held, no other connection is allowed to change the schema definition

of the table. However, other connections that execute SELECT statements and DML

statements are not restricted. Usually the biggest gotcha with respect to metadata locks is

 long- running transactions, possibly being idle, preventing DDL statements from starting

their work.

Chapter 6 high-LeveL LoCk types

112

If you encounter a conflict around a metadata lock, you will see the query state in the

process list set to “Waiting for table metadata lock.” An example of this including queries

to setup is shown in Listing 6-4.

Listing 6-4. Example of waiting for table metadata lock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 428 768 6

-- 2 429 769 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT * FROM world.city WHERE ID = 130\G

*************************** 1. row ***************************

 ID: 130

 Name: Sydney

CountryCode: AUS

 District: New South Wales

 Population: 3276207

1 row in set (0.0006 sec)

-- Connection 2

Connection 2> OPTIMIZE TABLE world.city;

Connection 2 blocks, and while you are in this situation, you can query sys.session

or similar as shown in Listing 6-5.

Listing 6-5. sys.session for the connections involved in the metadata lock

-- Investigation #1

-- Connection 3

Connection 3> SELECT thd_id, conn_id, state,

 current_statement, statement_latency,

 last_statement, trx_state

Chapter 6 high-LeveL LoCk types

113

 FROM sys.session

 WHERE conn_id IN (428, 429)

 ORDER BY conn_id\G

*************************** 1. row ***************************

 thd_id: 768

 conn_id: 428

 state: NULL

current_statement: SELECT * FROM world.city WHERE ID = 130

statement_latency: NULL

 last_statement: SELECT * FROM world.city WHERE ID = 130

 trx_state: ACTIVE

*************************** 2. row ***************************

 thd_id: 769

 conn_id: 429

 state: Waiting for table metadata lock

current_statement: OPTIMIZE TABLE world.city

statement_latency: 26.62 s

 last_statement: NULL

 trx_state: COMMITTED

2 rows in set (0.0607 sec)

In this example, the connection with conn_id = 428 has an ongoing transaction

and in the previous statement queried the world.city table (the current statement in

this case is the same as it is not cleared until the next statement is executed). While the

transaction is still active, conn_id = 429 has executed an OPTIMIZE TABLE statement

which is now waiting for the metadata lock. (Yes, OPTIMIZE TABLE does not change the

schema definition, but as a DDL statement, it is still affected by the metadata lock.)

Since MySQL does not have transactional DDL statements, the transaction state for

conn_id = 429 shows up as committed.

It is convenient when it is the current or last statement that is the cause of the

metadata lock. In more general cases, you can use the performance_schema.metadata_

locks table with the OBJECT_TYPE column set to TABLE to find granted and pending

metadata locks. Listing 6-6 shows an example of granted and pending metadata locks

using the same setup as in the previous example. Chapter 14 goes into more detail about

investigating metadata locks.

Chapter 6 high-LeveL LoCk types

114

Listing 6-6. Example of metadata locks

-- Investigation #2

Connection 3> SELECT object_type, object_schema, object_name,

 lock_type, lock_duration, lock_status,

 owner_thread_id

 FROM performance_schema.metadata_locks

 WHERE owner_thread_id IN (768, 769)

 AND object_type = 'TABLE'\G

*************************** 1. row ***************************

 object_type: TABLE

 object_schema: world

 object_name: city

 lock_type: SHARED_READ

 lock_duration: TRANSACTION

 lock_status: GRANTED

owner_thread_id: 768

*************************** 2. row ***************************

 object_type: TABLE

 object_schema: world

 object_name: city

 lock_type: SHARED_NO_READ_WRITE

 lock_duration: TRANSACTION

 lock_status: PENDING

owner_thread_id: 769

2 rows in set (0.0010 sec)

In the example, thread id 768 (the same as conn_id = 428 from the sys.session

output) owns a shared read lock on the world.city table due to an ongoing transaction,

and thread id 769 is waiting for a lock as it is trying to execute a DDL statement on the

table.

When you are done, make sure you roll back or commit the transaction in

Connection 1, so the OPTIMIZE TABLE can complete:

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0004 sec)

Chapter 6 high-LeveL LoCk types

115

A special case of metadata locks are locks taken explicitly with the LOCK TABLES

statement.

 Explicit Table Locks
Explicit table locks are taken with the LOCK TABLES and the FLUSH TABLES WITH READ

LOCK statements. With the LOCK TABLES statement, it is possible to take shared or

exclusive locks; FLUSH TABLES WITH READ LOCK always takes a shared lock. The tables

are locked, until they are explicitly released with the UNLOCK TABLES statement. When

FLUSH TABLES WITH READ LOCK is executed without listing any tables, the global read

lock (i.e., affecting all tables) is taken. While these locks also protect the data, they are

considered as metadata locks in MySQL.

Explicit table locks, other than FLUSH TABLES WITH READ LOCK in connection with

backups, are not often used with InnoDB as InnoDB’s sophisticated lock features are in

most cases superior to handling locks yourself. However, if you really need to lock the

entire tables, explicit locks can be useful as they are very cheap for MySQL to check.

An example of a connection taking an explicit read lock on the world.country and

world.countrylanguage tables and a write lock on the world.city table is shown in

Listing 6-7.

Listing 6-7. Using explicit table locks

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 432 772 6

-- Connection 1

Connection 1> LOCK TABLES world.country READ,

 world.countrylanguage READ,

 world.city WRITE;

Query OK, 0 rows affected (0.0029 sec)

When you take explicit locks, you are only allowed to use the tables you have locked

and in accordance with the requested locks. This means you will get an error if you take

a read lock and attempt to write to the table (ER_TABLE_NOT_LOCKED_FOR_WRITE) or if

you try to use a table you did not take a lock for (ER_TABLE_NOT_LOCKED), for example

(continuation of Listing 6-7)

Chapter 6 high-LeveL LoCk types

116

Connection 1> UPDATE world.country

 SET Population = Population + 1

 WHERE Code = 'AUS';

ERROR: 1099: Table 'country' was locked with a READ lock and can't be

updated

Connection 1> SELECT *

 FROM sakila.film

 WHERE film_id = 1;

ERROR: 1100: Table 'film' was not locked with LOCK TABLES

Since explicit locks are considered metadata locks, the symptoms and information

in the performance_schema.metadata_locks table are the same as for implicit metadata

locks, and you also unlock the tables using the UNLOCK TABLES statement:

Connection 1> UNLOCK TABLES;

Query OK, 0 rows affected (0.0006 sec)

Another table-level lock but handled implicitly is plainly called a table lock.

 Implicit Table Locks
MySQL takes implicit table locks when a table is queried. Table locks do not play a large

role for InnoDB tables except for flush, metadata, and explicit locks as InnoDB uses

record locks to allow concurrent access to a table as long as the transactions do not

modify the same rows (roughly speaking – as the next chapter shows – there is more to it

than that).

InnoDB does however work with the concept of intention locks at the table level.

Since you are likely to encounter those when investigating lock issues, it is worth

familiarizing yourself with them. As mentioned in the discussion of lock access levels,

intention locks mark what the intention of the transaction is.

For locks taken by transactions, first, an intention lock is taken, and then it may if

needed be upgraded. This is unlike an explicit LOCK TABLES that does not change. To get

a shared lock, the transaction first takes an intention shared lock and then the shared

lock. Similarly, for an exclusive lock, an intention exclusive lock is first taken. Some

examples of intention locks are as follows:

Chapter 6 high-LeveL LoCk types

117

• A SELECT ... FOR SHARE statement takes an intention shared lock

on the tables queried. The SELECT ... LOCK IN SHARE MODE syntax

is a synonym.

• A SELECT ... FOR UPDATE statement takes an intention exclusive

lock on the tables queried.

• A DML statement (not including SELECT) takes an intention exclusive

lock on the modified tables. If a foreign key column is modified, an

intention shared lock is taken on the parent table.

The table-level locks can be found in the performance_schema.data_locks table

with the LOCK_TYPE column set to TABLE. Listing 6-8 shows an example of an intention

shared lock.

Listing 6-8. Example of an InnoDB intention shared lock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 446 796 6

-- 2 447 797 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT *

 FROM world.city

 WHERE ID = 130

 FOR SHARE\G

*************************** 1. row ***************************

 ID: 130

 Name: Sydney

CountryCode: AUS

 District: New South Wales

 Population: 3276207

1 row in set (0.0010 sec)

-- Connection 2

Chapter 6 high-LeveL LoCk types

118

Connection 2> SELECT engine, thread_id, object_schema,

 object_name, lock_type, lock_mode,

 lock_status, lock_data

 FROM performance_schema.data_locks

 WHERE lock_type = 'TABLE'

 AND thread_id = 796\G

*************************** 1. row ***************************

 engine: INNODB

 thread_id: 796

object_schema: world

 object_name: city

 lock_type: TABLE

 lock_mode: IS

 lock_status: GRANTED

 lock_data: NULL

1 row in set (0.0011 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0004 sec)

This shows an intention shared lock on the world.city table. Notice that the engine

is set to INNODB and that lock_data is NULL.

 Backup Locks
The backup lock is an instance-level lock; that is, it affects the system as a whole. It is a

new lock introduced in MySQL 8. The backup lock prevents statements that can make

a backup inconsistent while still allowing other statements to be executed concurrently

with the backup. Currently the primary user of the backup lock is MySQL Enterprise

Backup which uses it together with the log lock to avoid executing FLUSH TABLES WITH

READ LOCK for InnoDB tables. The statements that are blocked include

• Statements that create, rename, or remove files. These include

CREATE TABLE, CREATE TABLESPACE, RENAME TABLE, and DROP TABLE

statements.

Chapter 6 high-LeveL LoCk types

119

• Account management statements such as CREATE USER, ALTER USER,

DROP USER, and GRANT.

• DDL statements that do not log their changes to the redo log. These,

for example, include adding an index.

A backup lock is created with the LOCK INSTANCE FOR BACKUP statement, and the

lock is released with the UNLOCK INSTANCE statement. It requires the BACKUP_ADMIN

privileges to execute LOCK INSTANCE FOR BACKUP. An example of obtaining the backup

lock and releasing it again is

mysql> LOCK INSTANCE FOR BACKUP;

Query OK, 0 rows affected (0.0002 sec)

mysql> UNLOCK INSTANCE;

Query OK, 0 rows affected (0.0003 sec)

Note at the time of writing, taking a backup lock and releasing it is not allowed
when using the X protocol (connecting through the port specified with mysqlx_
port or the socket specified with mysqlx_socket). attempting to do so returns
an ER_PLUGGABLE_PROTOCOL_COMMAND_NOT_SUPPORTED error: ERROR:
3130: Command not supported by pluggable protocols.

Additionally, statements that conflict with the backup lock also take the backup lock.

Since DDL statements sometimes consist of several steps, for example, rebuilding a table

in a new file and renaming the file, the backup lock can be released between the steps to

avoid blocking LOCK INSTANCE FOR BACKUP for longer than necessary.

Backup locks can be found in the performance_schema.metadata_locks table with

the OBJECT_TYPE column set to BACKUP LOCK. Listing 6-9 shows an example of a query

waiting for a backup lock held by LOCK INSTANCE FOR BACKUP.

Listing 6-9. Example of a conflict for the backup lock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 484 851 1

-- 2 485 852 1

-- 3 486 853 1

Chapter 6 high-LeveL LoCk types

120

-- Connection 1

Connection 1> LOCK INSTANCE FOR BACKUP;

Query OK, 0 rows affected (0.0004 sec)

-- Connection 2

Connection 2> OPTIMIZE TABLE world.city;

-- Connection 3

Connection 3> SELECT object_type, object_schema, object_name,

 lock_type, lock_duration, lock_status,

 owner_thread_id

 FROM performance_schema.metadata_locks

 WHERE object_type = 'BACKUP LOCK'

 AND owner_thread_id IN (851, 852)\G

*************************** 1. row ***************************

 object_type: BACKUP LOCK

 object_schema: NULL

 object_name: NULL

 lock_type: SHARED

 lock_duration: EXPLICIT

 lock_status: GRANTED

owner_thread_id: 851

*************************** 2. row ***************************

 object_type: BACKUP LOCK

 object_schema: NULL

 object_name: NULL

 lock_type: INTENTION_EXCLUSIVE

 lock_duration: TRANSACTION

 lock_status: PENDING

owner_thread_id: 852

2 rows in set (0.0007 sec)

-- Connection 1

Connection 1> UNLOCK INSTANCE;

Query OK, 0 rows affected (0.0003 sec)

Chapter 6 high-LeveL LoCk types

121

In the example, the connection with thread id 851 owns the backup lock, whereas the

connection with thread id 852 is waiting for it. Notice that LOCK INSTANCE FOR BACKUP

holds a shared lock, whereas the DDL statement requests an intention exclusive lock.

Related to the backup lock is the log lock which has also been introduced to reduce

locking during backups.

 Log Locks
When you create a backup, you typically want to include information about the log

positions and GTID set the backup is consistent with. In MySQL 5.7 and earlier, you

needed the global read lock while obtaining this information. In MySQL 8, the log lock

was introduced to allow you to read information such as the executed global transaction

identifiers (GTIDs), the binary log position, and the log sequence number (LSN) for

InnoDB without taking a global read lock.

The log lock prevents operations that make changes to log-related information. In

practice this means commits, FLUSH LOGS, and similar. The log lock is taken implicitly

by querying the performance_schema.log_status table. It requires the BACKUP_ADMIN

privilege to access the table. Listing 6-10 shows an example output of the log_status

table.

Listing 6-10. Example output of the log_status table

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 490 857 6

-- Connection 1

Connection 1 > SELECT *

 FROM performance_schema.log_status\G

*************************** 1. row ***************************

 SERVER_UUID: fcbb7afc-bdde-11ea-b95f-ace2d35785be

 LOCAL: {"gtid_executed": "d2549c41-86ca-11ea-9dc7-

ace2d35785be:1-351", "binary_log_file": "binlog.000002",

"binary_log_position": 39348}

 REPLICATION: {"channels": [{"channel_name": "", "relay_log_file":

"relay-bin.000002", "relay_log_position": 39588}]}

Chapter 6 high-LeveL LoCk types

122

STORAGE_ENGINES: {"InnoDB": {"LSN": 2073604726, "LSN_checkpoint":

2073604726}}

1 row in set (0.0012 sec)

The information available depends on the configuration of the instance, and the

values depend on the usage.

That concludes the review of the main high-lock types in MySQL.

 Summary
In this chapter the high-level lock types have been discussed. These are mostly

independent of the storage engine used and include a range of locks from user-level and

instance-level locks to table and metadata locks.

The user-level locks can be used to protect workflows in the application and are the

most generic lock type. The flush locks are experienced when tables are flushed and can

cause hard to diagnose issues due to the low-level table definition cache (TDC) version

lock. The metadata locks protect the metadata of schema objects such as the column

definitions for a table.

There are both explicit table locks and implicit table locks of which the implicit locks

are the most common when working with InnoDB tables. The implicit locks also include

the intention locks.

At the instance level, there are two lock types that were developed with backups in

mind. The backup locks protect against changes that will make a backup inconsistent

such as changes to users and privileges and certain schema changes. The log lock is an

implicit lock taken when querying the performance_schema.log_status to ensure

log- related status values can be obtained in a consistent way with minimal locking.

In addition to the high-level locks, InnoDB has its own set of locks working at the

record level that will be discussed in the next chapter.

Chapter 6 high-LeveL LoCk types

123
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_7

CHAPTER 7

InnoDB Locks
The locks studied in the previous chapter were all, apart from the InnoDB intention

locks, general for MySQL. InnoDB has its own sophisticated locking system that allows

for a highly concurrent access to the data. In online transaction processing (OLTP)

workloads, benchmarks show that depending on the workload, InnoDB handles up to

over 100 concurrent queries well.1 This is not only related to the record-level locks but

also low-level semaphores, and the latter is an area of ongoing improvement which is the

main reason that newer versions of MySQL handle concurrency better than old versions.

Tip Newer versions of MySQL support higher degrees of concurrent query
execution than older versions. Latest in 8.0.21, the lock system mutex was
sharded to reduce contention on high-concurrency systems.

In this chapter, first, the InnoDB record locks and next-key locks will be discussed

followed by gap locks and predicate locks. The last of the data-level locks that

are covered is auto-increment locks which are also important to maintain a good

performance at high concurrency inserts. The final topic of the chapter is semaphores.

 Record Locks and Next-Key Locks
Record locks are often called row locks; however, it is more than just locks on rows as

it also includes index and gap locks. Related are next-key locks. A next-key lock is the

combination of a record lock and a gap lock on the gap before the record. A next-key lock

is actually the default lock type in InnoDB, and thus you will just see it as S (shared) and

X (exclusive) in the lock outputs.

1 http://dimitrik.free.fr/blog/posts/mysql-performance-80-ga-and-tpcc-workloads.html

https://doi.org/10.1007/978-1-4842-6652-6_7#DOI
http://dimitrik.free.fr/blog/posts/mysql-performance-80-ga-and-tpcc-workloads.html

124

Record and next-key locks are typically the locks that are meant when talking about

InnoDB locks. They are fine-grained locks that aim at just locking the least amount of

data while still ensuring the data integrity.

A record or next-key lock can be shared or exclusive and affect just the rows and

indexes accessed by the transaction. The duration of exclusive locks is usually the

transaction with exceptions, for example, delete-marked records used for uniqueness

checks in INSERT INTO ... ON DUPLICATE KEY and REPLACE statements. For shared

locks, the duration can depend on the transaction isolation level as discussed in

Chapters 9 and 12.

Record and next-key locks can be found using the performance_schema.data_locks

table. Listing 7-1 shows an example of the locks from updating rows in the world.city

table using the secondary index CountryCode.

Listing 7-1. Example of InnoDB record locks

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 544 919 6

-- 2 545 920 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE CountryCode = 'LUX';

Query OK, 1 row affected (0.0008 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT thread_id, event_id,

 object_schema, object_name, index_name,

 lock_type, lock_mode, lock_status, lock_data

 FROM performance_schema.data_locks

 WHERE thread_id = 919\G

Chapter 7 INNoDB LoCkS

125

*************************** 1. row ***************************

 thread_id: 919

 event_id: 10

object_schema: world

 object_name: city

 index_name: NULL

 lock_type: TABLE

 lock_mode: IX

 lock_status: GRANTED

 lock_data: NULL

*************************** 2. row ***************************

 thread_id: 919

 event_id: 10

object_schema: world

 object_name: city

 index_name: CountryCode

 lock_type: RECORD

 lock_mode: X

 lock_status: GRANTED

 lock_data: 'LUX', 2452

*************************** 3. row ***************************

 thread_id: 919

 event_id: 10

object_schema: world

 object_name: city

 index_name: PRIMARY

 lock_type: RECORD

 lock_mode: X,REC_NOT_GAP

 lock_status: GRANTED

 lock_data: 2452

*************************** 4. row ***************************

 thread_id: 919

 event_id: 10

object_schema: world

 object_name: city

Chapter 7 INNoDB LoCkS

126

 index_name: CountryCode

 lock_type: RECORD

 lock_mode: X,GAP

 lock_status: GRANTED

 lock_data: 'LVA', 2434

4 rows in set (0.0014 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.1702 sec)

The first row is the intention exclusive table lock that has already been discussed.

The second row is a next-key lock on the CountryCode index for the value (‘LUX’, 2452)

where ‘LUX’ is the country code used in the WHERE clause and 2452 is the primary key

id added to the nonunique secondary index. The city with ID = 2452 is the only city

matching the WHERE clause, and the primary key record (the row itself) is shown in the

third row of the output. The lock mode is X,REC_NOT_GAP which means it is an exclusive

lock on the record but not on the gap.

What is a gap? An example is shown in the fourth row of the output. Gap locks are so

important that the discussion of the gap lock is split out into its own.

 Gap Locks
A gap lock protects the space between two records. This can be in the row through the

clustered index or in a secondary index. Before the first record in an index page and after

the last in the page, there are pseudo-records called the infimum record and supremum

record, respectively. Gap locks are often the lock type causing the most confusion.

Experience from studying lock issues is the best way to become familiar with them.

Consider the query from the previous example:

UPDATE world.city

 SET Population = Population + 1

 WHERE CountryCode = 'LUX';

This query changes the population of all cities with CountryCode = 'LUX'. What

happens if a new city is inserted between the update and the commit of the transaction?

If the UPDATE and INSERT statements commit in the same order they are executed, all is

Chapter 7 INNoDB LoCkS

127

as such fine. However, if you commit the changes in the opposite order, then the result is

inconsistent as it would be expected the inserted row would also have been updated.

This is where the gap lock comes into play. It guards the space where new records

(including records moved from a different position) would be inserted, so it is not

changed until the transaction holding the gap lock is completed. If you look at the fourth

row in the output from the example in Listing 7-1, you can see an example of a gap lock:

*************************** 4. row ***************************

 thread_id: 919

 event_id: 10

object_schema: world

 object_name: city

 index_name: CountryCode

 lock_type: RECORD

 lock_mode: X,GAP

 lock_status: GRANTED

 lock_data: 'LVA', 2434

4 rows in set (0.0014 sec)

This is an exclusive gap lock on the CountryCode index for the value (‘LVA’, 2434).

Since the query requested to update all rows with the CountryCode set to “LUX,” the gap

lock ensures that no new rows are inserted for the “LUX” country code. The country code

“LVA” is the next value in the CountryCode index, so the gap between “LUX” and “LVA” is

protected with an exclusive lock. On the other hand, it is still possible to insert new cities

with CountryCode = 'LVA'. In some places, this is referred to as a “gap before record”

which makes it easier to understand how the gap lock works.

One peculiarity of gap locks is that gap locks do not conflict with another gap lock

even if both are exclusive. The purpose of gap locks is not to prevent access to the gap

but exclusively to prevent inserting data into the gap. When discussing insert intention

locks, you will see how a gap lock blocks the insert.

Gap locks are taken to a much less degree when you use the READ COMMITTED

transaction isolation level rather than REPEATABLE READ or SERIALIZABLE.

Related to gap locks are predicate locks.

Chapter 7 INNoDB LoCkS

128

 Predicate and Page Locks
A predicate lock is similar to a gap lock but applies to spatial indexes where an absolute

ordering cannot be made and thus a gap lock does not make sense. Instead of a gap

lock, for spatial indexes in the REPEATABLE READ and SERIALIZABLE transaction isolation

levels, InnoDB creates a predicate lock on the minimum bounding rectangle (MBR) used

for the query or for entire pages. This will allow consistent reads by preventing changes

to the data within the minimum bounding rectangle or pages.

When querying the performance_schema.data_locks table, predicate locks will have

either PREDICATE or PRDT_PAGE with the latter being a page lock.

As an example of predicate locks, consider the address table in the sakila database.

This has the column location which is of the geometry data type with the Spatial

Reference System Identifier (SRID) set to 0. (An SRID is required in MySQL 8 to have a

spatial index.) The index on the location column is named idx_location. Listing 7-2

shows how a predicate lock is taken when updating one of the addresses.

Listing 7-2. Example of predicate/page locks

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 562 954 6

-- 2 563 955 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE sakila.address

 SET address = '42 Concurrency Boulevard',

 district = 'Punjab',

 city_id = 208,

 postal_code = 40509,

 location = ST_GeomFromText('POINT(75.91 31.53)', 0)

 WHERE address_id = 372;

Query OK, 1 row affected (0.0008 sec)

Chapter 7 INNoDB LoCkS

129

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT engine_lock_id, thread_id, event_id,

 object_schema, object_name, index_name,

 lock_type, lock_mode, lock_status, lock_data

 FROM performance_schema.data_locks

 WHERE thread_id = 954

 AND index_name = 'idx_location'\G

*************************** 1. row ***************************

engine_lock_id: 2123429833312:1074:12:0:2123393008216

 thread_id: 954

 event_id: 10

 object_schema: sakila

 object_name: address

 index_name: idx_location

 lock_type: RECORD

 lock_mode: S,PRDT_PAGE

 lock_status: GRANTED

 lock_data: infimum pseudo-record

*************************** 2. row ***************************

engine_lock_id: 2123429833312:1074:13:0:2123393008560

 thread_id: 954

 event_id: 10

 object_schema: sakila

 object_name: address

 index_name: idx_location

 lock_type: RECORD

 lock_mode: S,PRDT_PAGE

 lock_status: GRANTED

 lock_data: infimum pseudo-record

2 rows in set (0.0006 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0435 sec)

Chapter 7 INNoDB LoCkS

130

The important part of the update is that the location column is changed. In the

output from the data_locks table, it can be seen a predicate page lock was taken.

One final lock type related to records that you should know is insert intention locks.

 Insert Intention Locks
Remember that for table locks, InnoDB has intention locks for whether the transaction

will use the table in a shared or exclusive manner. Similarly, InnoDB has insert intention

locks at the record level. InnoDB uses these locks – as the name suggests – with INSERT

statements to signal the intention to other transactions. As such, the lock is on a yet to

be created record (so it is a gap lock) rather than on an existing record. The use of insert

intention locks can help increase the concurrency that inserts can be performed at.

You are not very likely to see insert intention locks in lock outputs unless an

INSERT statement is waiting for a lock to be granted. You can force a situation where

this happens by creating a gap lock in another transaction that will prevent the INSERT

statement from completing. The example in Listing 7-3 creates a gap lock in Connection

1 and then in Connection 2 attempts to insert a row which conflicts with the gap lock.

Finally, in a third connection, the lock information is retrieved.

Listing 7-3. Example of an insert intention lock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 577 972 6

-- 2 578 973 6

-- 3 579 974 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT *

 FROM world.city

 WHERE ID > 4079

 FOR UPDATE\G

0 rows in set (0.0007 sec)

Chapter 7 INNoDB LoCkS

131

-- Connection 2

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 2> INSERT INTO world.city

 VALUES (4080, 'Darwin', 'AUS',

 'Northern Territory', 146000);

-- Connection 3

Connection 3> SELECT thread_id, event_id,

 object_schema, object_name, index_name,

 lock_type, lock_mode, lock_status, lock_data

 FROM performance_schema.data_locks

 WHERE thread_id IN (972, 973)

 AND object_name = 'city'

 AND index_name = 'PRIMARY'\G

*************************** 1. row ***************************

 thread_id: 972

 event_id: 10

object_schema: world

 object_name: city

 index_name: PRIMARY

 lock_type: RECORD

 lock_mode: X

 lock_status: GRANTED

 lock_data: supremum pseudo-record

*************************** 2. row ***************************

 thread_id: 973

 event_id: 10

object_schema: world

 object_name: city

 index_name: PRIMARY

 lock_type: RECORD

 lock_mode: X,INSERT_INTENTION

 lock_status: WAITING

 lock_data: supremum pseudo-record

2 rows in set (0.0007 sec)

Chapter 7 INNoDB LoCkS

132

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

-- Connection 2

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.3035 sec)

Notice that for the RECORD lock, the lock mode includes INSERT_INTENTION – the

insert intention lock. In this case, the data locked is the supremum pseudo-record, but

that can also be the value of the primary key depending on the situation. If you recall the

next-key lock discussion, then X means a next-key lock, but this is a special case as the

lock is on the supremum pseudo-record, and it is not possible to lock that, so effectively

it is just a gap lock on the gap before the supremum pseudo-record.

Another lock that you need to be aware of when inserting data is the auto-increment

lock.

 Auto-Increment Locks
When you insert data into a table that has an auto-increment counter, it is necessary to

protect the counter so two transactions are guaranteed to get unique values. If you use

statement-based logging to the binary log, there are further restrictions as the auto-

increment value is recreated for all rows except the first when the statement is replayed.

InnoDB supports three lock modes, so you can adjust the amount of locking

according to your needs. You choose the lock mode with the innodb_autoinc_lock_mode

option which takes the values 0, 1, and 2 with 2 being the default in MySQL 8. It requires

a restart of MySQL to change the value. The meaning of the values is summarized in

Table 7-1.

Chapter 7 INNoDB LoCkS

133

The higher the value of innodb_autoinc_lock_mode, the less locking. The price

to pay for that is increased number of gaps in the sequence of auto-increment values

and for innodb_autoinc_lock_mode = 2 the possibility of interleaved values. Unless

you cannot use row-based binary logging or have special needs for consecutive auto-

increment values, it is recommended to use the value of 2.

That concludes the discussion of data-level locks, but when discussing MySQL

concurrency, there is one important topic left: mutexes and rw-lock semaphores.

 Mutexes and RW-Lock Semaphores
Inside the MySQL source code, it is necessary to protect code paths. An example is

to protect the code that modifies the content of the buffer pool to avoid two threads

modifying the buffer pool content at the same time and thus potentially causing

conflicting changes. In some way, you can compare mutexes to the user-level locks,

except the former is for the MySQL code paths and the latter for the application code

paths using MySQL.

Table 7-1. Supported values for the innodb_autoinc_lock_mode option

Value Mode Description

0 traditional the locking behavior of MySQL 5.0 and earlier. the lock is held until

the end of the statement, so values are assigned in repeatable and

consecutive order.

1 Consecutive For the INSERT statement where the number of rows is known at the start

of the query, the required number of auto-increment values is assigned

under a lightweight mutex, and the auto-increment lock is avoided. For

statements where the number of rows is not known, the auto-increment

lock is taken and held to the end of the statement. this was the default in

MySQL 5.7 and earlier.

2 Interleaved the auto-increment lock is never taken, and the auto-increment values for

concurrent inserts may be interleaved. this mode is only safe when binary

logging is disabled or binlog_format is set to ROW. It is the default value

in MySQL 8.

Chapter 7 INNoDB LoCkS

134

Note InnoDB uses the terms mutex and semaphore somewhat interchangeably.
For example, the SEMAPHORES section in the InnoDB monitor also includes
information of mutex waits and SHOW ENGINE INNODB MUTEX includes
semaphores.

It is not only InnoDB that uses synchronization objects in MySQL; for example,

the table open cache is also guarded by a mutex. However, in most cases, when you

encounter problems with contention on the synchronization objects, it is related to

InnoDB as that is where the pressure of high concurrency operations is usually the

largest, and for InnoDB there are readily available monitoring tools for investigating the

contention. For this reason, only the InnoDB will be discussed here.

The mutexes and semaphores are much more difficult to study than the data locks

as it is not possible to pause the code execution while the locks are in place and study

them directly. (Well it is, but that requires using a debugger such as gdb and the use of

 breakpoints.) Even with the synchronization waits enabled in the Performance Schema,

you will usually fall short as there will be some many waits that even the long history

table with a default of 10000 rows will quickly get exhausted even by a single connection

as it can be seen from Listing 7-4.

Listing 7-4. Example of synchronization waits

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 638 1057 6

-- 2 639 1058 6

-- Connection 1

Connection 1> UPDATE performance_schema.setup_instruments

 SET ENABLED = 'YES',

 TIMED = 'YES'

 WHERE NAME LIKE 'wait/synch/%';

Query OK, 323 rows affected (0.0230 sec)

Rows matched: 323 Changed: 323 Warnings: 0

Chapter 7 INNoDB LoCkS

135

Connection 1> UPDATE performance_schema.setup_consumers

 SET ENABLED = 'YES'

 WHERE NAME IN ('events_waits_current', 'events_waits_

history_long');

Query OK, 2 rows affected (0.0004 sec)

Rows matched: 2 Changed: 2 Warnings: 0

-- Connection 2

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE CountryCode = 'USA';

Query OK, 274 rows affected (0.1522 sec)

Rows matched: 274 Changed: 274 Warnings: 0

-- Connection 1

Connection 1> SELECT REPLACE(event_name, 'wait/synch/', '') AS event,

COUNT(*)

 FROM performance_schema.events_waits_history_long

 WHERE thread_id = 1058

 AND event_name LIKE 'wait/synch/%'

 GROUP BY event_name

 WITH ROLLUP

 ORDER BY COUNT(*);

+--+----------+

| event | COUNT(*) |

+--+----------+

| mutex/sql/MYSQL_BIN_LOG::LOCK_done | 1 |

| mutex/innodb/purge_sys_pq_mutex | 1 |

| mutex/sql/MYSQL_BIN_LOG::LOCK_sync | 1 |

| mutex/sql/MYSQL_BIN_LOG::LOCK_log | 1 |

| mutex/mysqlx/vio_shutdown | 1 |

| mutex/sql/LOCK_plugin | 1 |

| mutex/sql/LOCK_slave_trans_dep_tracker | 1 |

| mutex/sql/MYSQL_BIN_LOG::LOCK_binlog_end_pos | 1 |

| mutex/sql/MYSQL_BIN_LOG::LOCK_commit | 1 |

Chapter 7 INNoDB LoCkS

136

| mutex/sql/MYSQL_BIN_LOG::LOCK_xids | 1 |

| sxlock/innodb/rsegs_lock | 1 |

| sxlock/innodb/undo_spaces_lock | 1 |

| mutex/sql/MYSQL_BIN_LOG::LOCK_sync_queue | 2 |

| mutex/innodb/lock_sys_table_mutex | 2 |

| mutex/sql/MYSQL_BIN_LOG::LOCK_flush_queue | 2 |

| mutex/sql/Gtid_state | 2 |

| mutex/sql/LOCK_table_cache | 2 |

| mutex/sql/MYSQL_BIN_LOG::LOCK_commit_queue | 2 |

| mutex/sql/THD::LOCK_thd_query | 2 |

| mutex/innodb/undo_space_rseg_mutex | 3 |

| mutex/sql/THD::LOCK_thd_data | 3 |

| rwlock/sql/gtid_commit_rollback | 3 |

| mutex/mysys/THR_LOCK_open | 4 |

| mutex/sql/THD::LOCK_query_plan | 4 |

| mutex/innodb/flush_list_mutex | 5 |

| sxlock/innodb/index_tree_rw_lock | 5 |

| mutex/innodb/trx_undo_mutex | 274 |

| mutex/innodb/trx_sys_mutex | 279 |

| sxlock/innodb/hash_table_locks | 288 |

| sxlock/innodb/btr_search_latch | 550 |

| sxlock/innodb/lock_sys_global_rw_lock | 551 |

| sxlock/innodb/log_sn_lock | 551 |

| mutex/innodb/lock_sys_page_mutex | 554 |

| mutex/innodb/trx_mutex | 850 |

| NULL | 3950 |

+--+----------+

35 rows in set (0.0173 sec)

Connection 1> UPDATE performance_schema.setup_instruments

 SET ENABLED = 'NO',

 TIMED = 'NO'

 WHERE NAME LIKE 'wait/synch/%';

Query OK, 323 rows affected (0.0096 sec)

Chapter 7 INNoDB LoCkS

137

Rows matched: 323 Changed: 323 Warnings: 0

Connection 1> UPDATE performance_schema.setup_consumers

 SET ENABLED = 'NO'

 WHERE NAME IN ('events_waits_current', 'events_waits_

history_long');

Query OK, 2 rows affected (0.0004 sec)

Rows matched: 2 Changed: 2 Warnings: 0

In this simple example, almost 4000 (the NULL row at the bottom of the result of

querying events_waits_history_long) synchronization objects were requested. The

exact list of waits and the number of them will vary from execution to execution and

system to system depending on the state of the system (like whether the data is already

in the buffer pool) and the configuration. If there is enough other activity, the number

may also be much lower as some of the waits may have been pushed out of the events_

waits_history_long table by newer events. To complicate matters, background threads

also generate wait events, so even if the system has no connections, wait events are

created.

While it is hard to set up test cases that demonstrate the use of individual

synchronization objects, the good news is that you as an end user mostly need to worry

about contention, and the SHOW ENGINE INNODB STATUS and SHOW ENGINE INNODB

MUTEX statements will provide you information about the contention of InnoDB mutexes

and semaphores.

In general, you will need to study the source code to understand what the wait is for;

however, alone considering the file can often provide a good indication of the functional

area where the contention happens. Table 7-2 shows a few examples of how to map the

file name provided by the mutex and semaphore information to the functional area. The

source code path is relative to storage/innobase which contains the implementation of

the InnoDB storage engine.

Chapter 7 INNoDB LoCkS

138

Other than for mutexes and semaphores implemented in header files, in general,

you get to the source code file by using the name before the 0 in the file name (e.g., btr

in btr0sea.cc) as the name of the directory and then the file name itself. If you open

the file in an editor, then just after the license and copyright header, you will see a brief

comment describing what the file is for, for example, from storage/innobase/btr/

btr0sea.cc:

/** @file btr/btr0sea.cc

 The index tree adaptive search

 Created 2/17/1996 Heikki Tuuri

 ***/

So, the btr0sea.cc file implements the adaptive search on the index tree of which

the adaptive hash index is part of (and where the contention most commonly occurs).

WHY INNOBASE? A BRIEF HISTORY OF INNODB

It may have puzzled you why the path to the InnoDB source code is storage/innobase/

using “innobase” rather than “innodb.” to understand that, you need to dive into the history of

InnoDB – which turns out to be quite interesting.

Table 7-2. Mutex and semaphore file names and their functional area

File Name Source Code Path Functional Area

btr0sea.cc btr/btr0sea.cc the adaptive hash index.

buf0buf.cc buf/buf0buf.cc the buffer pool.

buf0flu.cc buf/buf0flu.cc the buffer pool flushing algorithm.

dict0dict.cc dict/dict0dict.cc the InnoDB data dictionary.

sync0sharded_rw.h include/sync0sharded_rw.h the sharded read-write lock for

threads.

hash0hash.cc ha/hash0hash.cc For protecting hash tables.

fil0fil.cc fil/fil0fil.cc the tablespace memory cache.

Chapter 7 INNoDB LoCkS

139

Innobase was a company founded by heikki tuuri (yep, the same that is listed in the comment

for the file storage/innobase/btr/btr0sea.cc) in 1995, the same year as the initial

release of MySQL, but at that time the two had nothing to do with each other. Innobase was

used to develop InnoDB which at the time meant to be an independent product. It was not until

later when MySQL added support for third-party storage engines that heikki released InnoDB

as open source and it was integrated with MySQL.

In 2005, oracle acquired Innobase and thus InnoDB which made for an interesting situation with

MySQL’s main transactional storage engine (another much less used engine was Berkley DB,

BDB, which also was acquired by oracle) being maintained by a competitor. this was one reason

for the effort to develop the Falcon storage engine for MySQL 6. however, before that work was

completed, Sun Microsystems acquired MySQL, and oracle in turn acquired Sun Microsystems,

so in 2010, MySQL and InnoDB were finally part of the same company, and today InnoDB and

MySQL are developed by the same unit within oracle. this also meant that the Falcon storage

engine was abandoned and never released with a general availability (Ga) status.

While Innobase as a company has disappeared a long time ago, its name still lives on in the

MySQL source code both in the path to the InnoDB source code and as names within the

source code.

 Summary
In this chapter the InnoDB data-level locks as well as mutexes and rw-lock semaphores

have been covered. These locks are all important to support concurrent access to the

InnoDB data which is one of InnoDB’s strengths.

First, the record locks and next-key locks were discussed. These are usually what are

meant when discussing InnoDB record locks. The next-key locks are the default locks in

InnoDB and protect the record as well as the gab before the record. Second, the concept

of gap locks was discussed. When mentioning gap locks, it refers to protecting the space

between two records without protecting the record itself. Third, the related concepts of

predicate and page locks that are used with spatial indexed were covered.

Fourth and fifth were two lock types that you will not encounter to the same degree

as the first three lock types. The insert intention locks are as the name suggest used in

connection with inserting data, and the auto-increment lock is used to ensure that auto-

increment values are assigned correctly.

Chapter 7 INNoDB LoCkS

140

Sixth and last was a discussion of mutexes and rw-lock semaphores primarily in

InnoDB. These are the most complex locks to work with and to a larger degree require

studying the source code.

That concludes the overview of the locks available in MySQL and InnoDB. The next

chapter moves on to the discussion of what happens when a lock cannot be obtained.

Chapter 7 INNoDB LoCkS

141
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_8

CHAPTER 8

Working with Lock
Conflicts
The whole idea of locks is to restrict access to objects or records to avoid conflicting

operations to concurrently access the object or records in a safe way. That means that,

sometimes, a lock cannot be granted. What happens in that case? It depends on the locks

requested and the circumstances. Metadata (including explicitly requested table locks)

and InnoDB locks operate with a timeout, and for some lock cases explicit deadlock

detection exist.

It is important to understand that failures to obtain locks are a fact of life when

working with databases. In principle you can use very coarse-grained locks and avoid

failed locks except for timeouts – this is what the MyISAM storage engine does with very

poor write concurrency as a result. However, in practice, to allow for high concurrency of

write workloads, fine-grained locks are preferred which also introduce the possibility of

deadlocks.

The conclusion is that you should always make your application prepared to retry

getting a lock or fail gracefully. This applies whether it is an explicit or implicit lock.

Tip Always be prepared to handle failures to obtain locks. Failing to get a lock is
not a catastrophic error and should not normally be considered a bug. That said, as
discussed in Chapter 9, “Reducing Locking Issues,” there are techniques to reduce
lock contention that are worth having in mind when developing an application.

The rest of this chapter will discuss how InnoDB chooses which transaction should

first be granted a lock request when there are multiple requests for the same data lock,

the compatibility of InnoDB data locks, as well as the specifics of table-level timeouts,

record-level timeouts, InnoDB deadlocks, and InnoDB mutex and semaphore waits.

https://doi.org/10.1007/978-1-4842-6652-6_8#DOI

142

 Contention-Aware Transaction Scheduling (CATS)
An important decision when there are multiple requests for the same lock is to decide

in which order locks should be granted. The simplest solution, and the most commonly

used in databases, is to maintain a queue and serve the requests on a first-in-first-out

(FIFO) principle. This is also how locks were granted in MySQL 5.7 and earlier; however

in MySQL 8, a new scheduling algorithm was implemented.

The new implementation is based on the contention-aware transaction scheduling

(CATS) algorithm developed by Professor Barzan Mozafari’s team at the University of

Michigan and implemented in MySQL by Sunny Bains in collaboration with Professor

Mozafari’s team, particularly Jiamin Huang.

Tip If you want to learn more about the CATS algorithm, then https://
mysqlserverteam.com/contention-aware-transaction-scheduling-
arriving-in-innodb-to-boost-performance/ is a good starting point, and
there are links to two of the research papers in the comments – the main paper
being http://web.eecs.umich.edu/~mozafari/php/data/uploads/
pvldb_2018_sched.pdf. Another source is https://dev.mysql.com/
doc/refman/en/innodb-transaction-scheduling.html in the reference
manual.

The CATS algorithm works on the principle that transactions that already hold a

large number of locks are most important to drive to completion, so their locks can be

released as quickly as possible to the benefit of all transactions. One potential downside

of this approach is that if there continuously are transactions with many existing locks

waiting for a given lock, then they can potentially starve transactions with few locks from

ever getting the lock. To prevent that, the algorithm has safeguards to prevent starvation.

The safeguard works by adding a barrier at the end of the current queue of lock requests,

and all requests that are ahead of the barrier are handled before later arriving requests

will be considered.

The primary benefit of the CATS algorithm is under high concurrency workloads,

and until MySQL 8.0.20, it was only used when InnoDB detected heavy lock contention.

The algorithm was improved in 8.0.20 to improve the scalability, and the trx_schedule_

weight column was added to information_schema.INNODB_TRX, so it is possible to

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

https://mysqlserverteam.com/contention-aware-transaction-scheduling-arriving-in-innodb-to-boost-performance/
https://mysqlserverteam.com/contention-aware-transaction-scheduling-arriving-in-innodb-to-boost-performance/
https://mysqlserverteam.com/contention-aware-transaction-scheduling-arriving-in-innodb-to-boost-performance/
http://web.eecs.umich.edu/~mozafari/php/data/uploads/pvldb_2018_sched.pdf
http://web.eecs.umich.edu/~mozafari/php/data/uploads/pvldb_2018_sched.pdf
https://dev.mysql.com/doc/refman/en/innodb-transaction-scheduling.html
https://dev.mysql.com/doc/refman/en/innodb-transaction-scheduling.html

143

query the current weight a transaction in the LOCK WAIT state has according to the CATS

algorithm. At the same time, it was changed so the CATS algorithm is always used, and

the FIFO algorithm has been retired.

 InnoDB Data Lock Compatibility
Remember when discussing lock access level compatibility, the rules were relatively

simple. However, whether two InnoDB data locks are compatible with each other is

very complex to determine. It becomes particularly interesting as the relationship is not

symmetric, that is, a lock may be allowed in the presence of another lock, but not vice

versa. For example, an insert intention lock must wait for a gap lock, but a gap lock does

not have to wait for an insert intention lock. Another example (of lack of transitivity) is

that a gap plus record lock must wait for a record-only lock, and an insert intention lock

must wait for a gap plus record lock, but an insert intention lock does not need to wait for

a record-only lock.

What does that mean to you? It means that when you investigate lock contention

issues, you need to be aware that the lock order is significant, so when reproducing the

issue, all locks must be obtained in the same order.

Enough about the theory behind InnoDB algorithm for handling lock contention and

what may cause a lock not to be granted. What happens when a lock cannot be granted is

the next topic to be discussed.

 Metadata and Backup Lock Wait Timeouts
When you request a flush, metadata, or backup lock, the attempt to get the lock will time

out after lock_wait_timeout seconds. The default timeout is 31,536,000 seconds (365

days). You can set the lock_wait_timeout option dynamically and both at the global and

session scopes, which allows you to adjust the timeout to the specific needs for a given

process.

When a timeout occurs, the statement fails with an ER_LOCK_WAIT_TIMEOUT (error

number 1205) error as shown in Listing 8-1.

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

144

Listing 8-1. Lock wait timeout for table lock request

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 647 1075 6

-- 2 648 1076 6

-- Connection 1

Connection 1> LOCK TABLES world.city WRITE;

Query OK, 0 rows affected (0.0015 sec)

-- Connection 2

Connection 2> SET SESSION lock_wait_timeout = 5;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> LOCK TABLES world.city WRITE;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

-- Connection 1

Connection 1> UNLOCK TABLES;

Query OK, 0 rows affected (0.0003 sec)

The session value of lock_wait_timeout is set to 5 seconds to reduce how long a

time Connection 2 will block for when it attempts to get the write lock on the world.city

table. After waiting for 5 seconds, the error is returned with the error number set to 1205.

The recommended setting for the lock_wait_timeout option depends on the

requirements of the application. It can be an advantage to use a small value to prevent

the lock request to block other queries for a long time. This will typically require you to

implement handling of a lock request failure, for example, by retrying the statement.

A large value can on the other hand be useful to avoid having to retry the statement.

For the FLUSH TABLES statement, also remember that it interacts with the lower-

level table definition cache (TDC) version lock which may mean that abandoning the

statement does not allow subsequent queries to progress. In that case, it can be better to

have a high value for lock_wait_timeout to make it clearer what the lock relationship is.

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

145

 InnoDB Lock Wait Timeouts
When a query requests a record-level lock in InnoDB, it is subject to a timeout similarly

to the timeout for flush, metadata, and backup locks. Since record-level lock contention

is more common than table-level lock contention, and record-level locks increase

the potential for deadlocks, the timeout defaults to 50 seconds. It can be set using the

innodb_lock_wait_timeout option which can be set both for the global and session

scopes.

When a timeout occurs, the query fails with the ER_LOCK_WAIT_TIMEOUT error (error

number 1205) just like for a table-level lock timeout. Listing 8-2 shows an example where

an InnoDB lock wait timeout occurs.

Listing 8-2. Example of an InnoDB lock wait timeout

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 656 1087 6

-- 2 657 1088 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0006 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SET SESSION innodb_lock_wait_timeout = 3;

Query OK, 0 rows affected (0.2621 sec)

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

146

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0751 sec)

In this example, the lock wait timeout for Connection 2 is set to 3 seconds, so it is not

necessary to wait the usual 50 seconds for the timeout to occur.

When the timeout occurs, the innodb_rollback_on_timeout option defines how

much of the work done by the transaction is rolled back. When innodb_rollback_on_

timeout is disabled (the default), only the statement that triggered the timeout is rolled

back. When the option is enabled, the whole transaction is rolled back. The innodb_

rollback_on_timeout option can only be configured at the global level, and it requires a

restart to change the value.

Caution It is very important that a lock wait timeout is handled as otherwise it
may leave the transaction with locks that are not released. If that happens, other
transactions may not be able to acquire the locks they require. So, you need ensure
that you either retry the remaining part of the transaction, explicitly roll back the
transaction, or enable innodb_rollback_on_timeout to automatically roll back
the transaction on a lock wait timeout.

It is in general recommended to keep the timeout for InnoDB record-level locks

low. Often it is best to lower the value from the default 50 seconds. The longer a query is

allowed to wait for a lock, the larger the potential for other lock requests to be affected

which can lead to other queries stalling as well. It also makes deadlocks more likely to

occur. If you disable deadlock detection (discussed next), you should use a very small

value for innodb_lock_wait_timeout such as 1 or 2 seconds as you will be using the

timeout to detect deadlocks. Without deadlock detection, it is also recommended to

enable the innodb_rollback_on_timeout option.

 Deadlocks
Deadlocks sound like a very scary concept, but you should not let the name deter you.

Just like lock wait timeout, deadlocks are a fact of life in the world of high-concurrency

databases. What it really means is that there is a circular relationship between the

lock requests as illustrated by a traffic gridlock in Figure 8-1. The only way to resolve

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

147

the gridlock is to force one of the requests to abandon. In that sense, a deadlock is no

different from a lock wait timeout. In fact, you can disable deadlock detection in which

case, one of the locks will end up with a lock wait timeout instead.

So why are there deadlocks at all if they are not really needed? Since deadlocks

occur when there is a circular relationship between the lock requests, it is possible for

InnoDB to detect them as soon as the circle is completed. This allows InnoDB to tell

the user immediately that a deadlock has occurred without having to wait for the lock

wait timeout to happen. It is also useful to be told that a deadlock has occurred as it

often provides opportunities to improve data access in the application. You should

thus consider deadlocks a friend rather than a foe. Figure 8-2 shows an example of two

transactions querying a table which causes a deadlock.

Figure 8-1. A traffic gridlock

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

148

Figure 8-2. Example of two transactions causing a deadlock

In the example, transaction 1 first updates the row with ID = 130 and then the row

with ID = 3805. In between, transaction 2 updates first the row with ID = 3805 and then

the row with ID = 130. This means that by the time transaction 1 tries to update ID =

3805, transaction 2 already has a lock on the row. Transaction 2 can also not proceed as

it cannot get a lock on ID = 130 because transaction 1 already holds that. This is a classic

example of a simple deadlock. The circular lock relationship is also shown in Figure 8-3.

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

149

In this figure, it is clear which lock is held by transactions 1 and 2 and which locks are

requested and how the conflict can never be resolved without intervention. That makes

it qualify as a deadlock.

In the real world, deadlocks are often more complicated. In the example that has

been discussed here, only primary key record locks have been involved. In general, often

secondary keys, gap locks, and possible other lock types are also involved. There may

also be more than two transactions involved. The principle, however, remains the same.

Note A deadlock may even occur with as little as one query for each of two
transactions. If one query reads the records in ascending order and the other on
descending order, it is possible to get a deadlock.

When a deadlock occurs, InnoDB chooses the transaction that has “done the least

work” to become a victim. This is similar to the “Shoot The Other Node In The Head”

(STONITH) approach used in some high availability solutions such as MySQL NDB

Cluster except here it is a transaction that is being “shot in the head.” You can check the

Figure 8-3. The circular relationship of the locks causing the deadlock

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

150

trx_weight column in the information_schema.INNODB_TRX view to see the weight

used by InnoDB (the more work done, the higher weight). In practice this means that the

transaction that holds the fewest locks will be rolled back. When this occurs, the query

in the transaction that is chosen as the victim fails with the error ER_LOCK_DEADLOCK

returned (error code 1213), and the transaction is rolled back to release as many locks as

possible. An example of a deadlock occurring is shown in Listing 8-3.

Listing 8-3. Example of a deadlock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 659 1093 6

-- 2 660 1094 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0098 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 3805;

Query OK, 1 row affected (0.0009 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

151

-- Connection 1

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 3805;

ERROR: 1213: Deadlock found when trying to get lock; try restarting

transaction

-- Connection 2

Query OK, 1 row affected (0.1019 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0002 sec)

-- Connection 2

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.0293 sec)

A deadlock can be even simpler than in this example (though it is rare unless you

use locking SELECT statements either explicitly or using the SERIALIZABLE transaction

isolation level). Listing 8-4 shows a deadlock that occurs using just a single row.

Listing 8-4. A single row deadlock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 663 1097 6

-- 2 664 1098 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0004 sec)

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

152

Connection 1> SELECT * FROM world.city WHERE ID = 130 FOR SHARE;

+-----+--------+-------------+-----------------+------------+

| ID | Name | CountryCode | District | Population |

+-----+--------+-------------+-----------------+------------+

| 130 | Sydney | AUS | New South Wales | 3276207 |

+-----+--------+-------------+-----------------+------------+

1 row in set (0.0005 sec)

-- Connection 2

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 2> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

-- Connection 1

Connection 1> UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130;

Query OK, 1 row affected (0.0447 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

ERROR: 1213: Deadlock found when trying to get lock; try restarting

transaction

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0280 sec)

-- Connection 2

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

In this case, Connection 2 becomes a victim of a deadlock without having ever

being granted a record lock. This deadlock happens because InnoDB currently does

not allow the request to upgrade the shared lock to an exclusive lock in Connection 1

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

153

to jump ahead of Connection 2’s lock request. It is something that can potentially be

implemented, but because these scenarios are relatively rare, it has not been done yet.

That said, if you have foreign keys, a DML statement may take a shared lock on the other

table in the foreign key relationship (see also Chapter 10), so if a subsequent statement

in the same transaction tried to upgrade that shared lock, then you can see the same

kind of deadlocks as in this example.

In most cases, the automatic deadlock detection is great to avoid queries stalling for

longer than necessary. Deadlock detection is not for free though. For MySQL instances

with a very high query concurrency, the cost of looking for deadlocks can become

significant, and you are better off disabling the deadlock detection which is done by

setting the innodb_deadlock_detect option to OFF. That said, in MySQL 8.0.18 and

later, the deadlock detection has been moved to a dedicated background thread which

improves the performance.

If you do disable deadlock detection, it is recommended to set innodb_lock_

wait_timeout to a very low value such as 1 second to quickly detect lock contention.

Additionally, enable the innodb_rollback_on_timeout option to ensure the locks are

released.

The last kind of lock conflict handling occurs with InnoDB mutexes and semaphores.

 InnoDB Mutex and Semaphore Waits
When InnoDB requests a mutex or rw-lock semaphore and it cannot be immediately

obtained, it will have to wait. Because the waits happen at a lower level than data locks,

InnoDB will resort to one of two approaches while waiting. It can enter a loop and poll

for the lock to become available, or it can suspend the thread and make it available for

other tasks.

Polling allows the lock to be obtained more quickly but it keeps the CPU thread

busy, and polling can cause CPU cache invalidation for other threads. There are three

configuration options that can be used to control the behavior:

• innodb_spin_wait_delay: When polling, InnoDB will calculate a

random number between zero and innodb_spin_wait_delay. This is

multiplied with innodb_spin_wait_pause_multiplier to determine

the number of PAUSE instructions that occur in the poll loop. The

random number of PAUSE events is used to reduce the impact of

cache invalidation. Smaller values – or even 0 – can potentially help

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

154

on systems with a single shared fast CPU cache. Larger values can

reduce the impact of cache invalidation particularly on multi-CPU

systems.

• innodb_spin_wait_pause_multiplier: The multiplier used with

the spin wait delay. This option is new from MySQL 8.0.16 and

was introduced to accommodate for the change in the duration of

the PAUSE instructions introduced with the Skylake generation of

processors. The primary use of changing the value is using MySQL on

architectures that have a different duration of the PAUSE instructions

than x86/x86-64 before the Skylake generation. In earlier releases,

the multiplier is hardcoded to 50 which is also the default value for

innodb_spin_wait_pause_multiplier.

• innodb_sync_spin_loops: The number of spin loops to perform before

suspending the thread. The lower the value, the quicker the CPU

thread is made available for other tasks at the expense of more context

switches. When the spin loops are exceeded, the OS waits counter for

the rw-lock increments. The higher the value, the quicker the lock can

be obtained at the cost of higher CPU usage. The default is 30.

You will rarely have to adjust these settings; however, in rare cases, they can

improve performance to some degree. That said, if you are not using the latest MySQL

version, you may benefit in terms of reducing mutex/semaphore contention more from

upgrading than tuning these options. In all cases, if you decide to change these settings,

make sure you test the performance thoroughly on the same architecture and hardware

configuration as your production system and with a workload that is a very good

representation of your production workload.

If an InnoDB mutex or rw-lock semaphore wait cannot be obtained immediately,

InnoDB will also register this internally. The relevant counter exposed through SHOW

ENGINE INNODB MUTEX will increment (though only mutexes and rw-locks with at least

one OS wait are displayed), and if you generate the InnoDB monitor report while the

wait is ongoing, it will be included in the SEMAPHORES wait section of the rapport. If a

wait continues without progress being detected for more than 240 seconds, InnoDB will

automatically enable the InnoDB monitor and write the output to the error log, so you

can investigate the issue. If no progress is detected for another 600 seconds, then InnoDB

will shut down MySQL as a preventive measure as it assumes an unresolvable situation

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

155

has occurred. In that case, you will see an error explaining the reason for the shutdown,

for example (yes, the duration printed is somewhat misleading as it is the time since the

“long semaphore wait” condition triggered at 240 seconds)

2020-07-05T09:30:24.151782Z 0 [ERROR] [MY-012872] [InnoDB] Semaphore wait

has lasted > 600 seconds. We intentionally crash the server because it

appears to be hung.

By crashing the server, InnoDB ensures that if a bug internally in InnoDB has been

encountered, the situation is resolved, but at the cost that MySQL will have to restart and

go through a crash recovery. For this reason, it is considered a last resort, and at present,

the timeout is not configurable.

Note When executing CHECK TABLE, the timeout threshold is increased to 7200
seconds (2 hours).

A shutdown like this typically happens for one of two reasons:

• There is a hardware or operating system issue that prevents InnoDB

progressing.

• There is a bug in InnoDB, for example, that progress for a slow

operation is not detected or a deadlock has occurred for the

acquisition of a mutex or semaphore.

If you encounter a shutdown like this, verify from the InnoDB monitor outputs

in the error log where the wait occurred. In some cases, you can use the thread ids to

determine which query is causing the wait. You should also check your system logs to

verify the health of your hardware and whether there are any indications of problems at

the operating system level.

 Summary
This chapter has provided an overview of what happens when a lock cannot

immediately be obtained. First, the contention-aware transaction scheduling (CATS)

algorithm was described. That is used in MySQL 8 to allow transactions that already hold

many locks to have their lock requests granted quicker, so their locks also can be more

quickly released again.

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

156

Second, it was discussed how the compatibility of InnoDB data locks is a very a

complex issue which means that the lock order must be taken into account when trying

to reproduce issues.

The rest of the chapter went through metadata, backup, and InnoDB lock wait

timeouts, deadlocks, and InnoDB mutex and rw-lock semaphore waits. Lock waits and

deadlocks are naturally occurring in high concurrency systems and should not on their

own be a cause for alarm. The main issue is when they become frequent. The default

lock wait timeouts may also be too long, so reducing them and handling the timeout can

be an option.

Now that you have an understanding of how locks work and how lock requests can

fail, you need to consider how you can reduce the impact of locking which is the topic of

the next chapter.

ChApTeR 8 WoRkIng WITh LoCk ConFLICTS

157
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_9

CHAPTER 9

Reducing Locking Issues
Remember that the locking in MySQL and InnoDB is a means to provide concurrent

access, and in general the fine-grained locking of InnoDB allows for a highly concurrent

workload. Yet, if you have excessive locking, it will cause reduced concurrency and query

pileups, and in the worst case, it can cause an application to come to a grinding halt and

cause a poor user experience.

Thus, it is important to have locks in mind when you write an application and design

the schema for its data and access. The strategies to reduce locking include adding

indexes, changing the transaction isolation level, changing the configuration, and

preemptive locking. This chapter covers each of these strategies.

Tip Do not be carried away in optimizing locks. If you only occasionally
encounter lock wait timeouts and deadlocks, it is usually better to retry the query
or transaction rather than spend time avoiding the issue. How frequent is too
frequent depends on your workload, but several retries every hour will not be an
issue for many applications.

 Transaction Size and Age
An important strategy to reduce lock issues is to keep your transactions small and to

avoid delays that keep the transactions open for longer than necessary. Among the most

common causes of lock issues are transactions that modify a large number of rows or

that are active for longer than necessary.

The size of the transaction is the amount of work the transaction does, particularly

the number of locks it takes, but the time the transaction takes to execute is also

important. As some of the other topics in this discussion will address, you can partly

reduce the impact through indexes and the transaction isolation level. However, it is

https://doi.org/10.1007/978-1-4842-6652-6_9#DOI

158

also important to have the overall result in mind. If you need to modify many rows,

ask yourself if you can split the work into smaller batches or whether it is required that

everything is done in the same transaction. It may also be possible to split out some

preparation work and do it outside the main transaction.

The duration of the transaction is also important. One common problem is

connections using autocommit = 0. This starts a new transaction every time a query

(including SELECT) is executed without an active transaction, and the transaction is

not completed until an explicit COMMIT or ROLLBACK is executed, a DDL statement is

executed, or the connection is closed. Some connectors disable autocommit by default,

so you may be using this mode without realizing it which can leave transactions open for

hours by mistake.

Tip Enable the autocommit option unless you have a specific reason to disable
it. When you have autocommitting enabled, InnoDB can also for many SELECT
queries detect it is a read-only transaction and reduce the overhead of the query.

Another pitfall is to start a transaction and perform slow operations in the

application while the transaction is active. This can be data that is sent back to the user,

interactive prompts, or file I/O. Make sure that you do these kinds of slow operations

when you do not have an active transaction open in MySQL.

 Indexes
Indexes reduce the amount of work performed to access a given row. That way indexes

are a great tool to reduce locking as only records accessed while executing the query will

be locked.

Consider a simple example where you query cities with the name Sydney in the

world.city table:

START TRANSACTION;

SELECT *

 FROM world.city

 WHERE Name = 'Sydney'

 FOR SHARE;

CHaptEr 9 rEDuCIng LoCkIng IssuEs

159

The FOR SHARE option is used to force the query to take a shared lock on the records

read. By default, there is no index on the Name column, so the query will perform a full

table scan to find the rows needed in the result. Without an index, there are 4103 record

locks (24 of the locks are on the supremum pseudo-record of the primary key) as shown

in Listing 9-1.

Listing 9-1. Record locks without an index on the Name column

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 697 1143 6

-- 2 698 1144 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> SELECT ID, Name, CountryCode, District

 FROM world.city

 WHERE Name = 'Sydney'

 FOR SHARE;

+-----+--------+-------------+-----------------+

| ID | Name | CountryCode | District |

+-----+--------+-------------+-----------------+

| 130 | Sydney | AUS | New South Wales |

+-----+--------+-------------+-----------------+

1 row in set (0.0034 sec)

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, COUNT(*)

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND thread_id = 1143

 GROUP BY index_name, lock_type, lock_mode;

CHaptEr 9 rEDuCIng LoCkIng IssuEs

160

+------------+-----------+-----------+----------+

| index_name | lock_type | lock_mode | COUNT(*) |

+------------+-----------+-----------+----------+

| NULL | TABLE | IS | 1 |

| PRIMARY | RECORD | S | 4103 |

+------------+-----------+-----------+----------+

2 rows in set (0.0323 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0005 sec)

If you add an index on the Name column, the lock count decreases to a total of three

record locks as shown in Listing 9-2.

Listing 9-2. Record locks with an index on the Name column

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 699 1145 6

-- 2 700 1146 6

-- Connection 1

Connection 1> ALTER TABLE world.city

 ADD INDEX (Name);

Query OK, 0 rows affected (1.5063 sec)

Records: 0 Duplicates: 0 Warnings: 0

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT ID, Name, CountryCode, District

 FROM world.city

 WHERE Name = 'Sydney'

 FOR SHARE;

CHaptEr 9 rEDuCIng LoCkIng IssuEs

161

+-----+--------+-------------+-----------------+

| ID | Name | CountryCode | District |

+-----+--------+-------------+-----------------+

| 130 | Sydney | AUS | New South Wales |

+-----+--------+-------------+-----------------+

1 row in set (0.0004 sec)

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, COUNT(*)

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND thread_id = 1145

 GROUP BY index_name, lock_type, lock_mode;

+------------+-----------+---------------+----------+

| index_name | lock_type | lock_mode | COUNT(*) |

+------------+-----------+---------------+----------+

| NULL | TABLE | IS | 1 |

| Name | RECORD | S | 1 |

| PRIMARY | RECORD | S,REC_NOT_GAP | 1 |

| Name | RECORD | S,GAP | 1 |

+------------+-----------+---------------+----------+

4 rows in set (0.0011 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0004 sec)

Connection 1> ALTER TABLE world.city

 DROP INDEX Name;

Query OK, 0 rows affected (0.3288 sec)

Records: 0 Duplicates: 0 Warnings: 0

On the flip side, more indexes provide more ways to access the same rows which

potentially can increase the number of deadlocks.

CHaptEr 9 rEDuCIng LoCkIng IssuEs

162

 Record Access order
Ensure that you to as large degree as possible access the records in the same order for

different transactions. In the deadlock example discussed in Chapter 8, what led to the

deadlock was that the two transactions accessed the rows in opposite order. If they had

accessed the rows in the same order, there would have been no deadlock. This also

applies when you access records in different tables.

Ensuring the same access order is by no means a trivial task. Different access orders

may even happen when you perform joins and the optimizer decides on different join

orders for two queries. If different join orders lead to excessive lock issues, you can

consider using optimizer hints to tell the optimizer to change the join order1, but you

should of course also have the query performance in mind in such cases.

 Transaction Isolation Levels
InnoDB supports several transaction isolation levels. Different isolation levels have

different lock requirements: particularly REPEATABLE READ and SERIALIZABLE require

more locks than READ COMMITTED.

The READ COMMITTED transaction isolation level can help on locking issues in two

ways. Far less gap locks are taken, and rows that are accessed during a DML statement

but not modified have their locks released again after the statement has completed.

For REPEATABLE READ and SERIALIZABLE, locks are only released at the end of the

transaction.

Note It is often said that the READ COMMITTED transaction isolation level does
not take gap locks. that is a myth and not correct. While far fewer gap locks are
taken, there are still some that are required. this, for example, includes when
InnoDB with checking foreign keys and unique key constraints as well as when a
page split occurs.

1 https://dev.mysql.com/doc/refman/en/optimizer-hints.html#optimizer-hints-join-order

CHaptEr 9 rEDuCIng LoCkIng IssuEs

https://dev.mysql.com/doc/refman/en/optimizer-hints.html#optimizer-hints-join-order

163

Consider an example where the population of the city named Sydney is changed

using the CountryCode column to limit the query to one country. This can be done with

the following query:

START TRANSACTION;

UPDATE world.city

 SET Population = 5000000

 WHERE Name = 'Sydney'

 AND CountryCode = 'AUS';

There is no index on the Name column, but there is one on CountryCode. So, the

update requires a scan of part of the CountryCode index. Listing 9-3 shows an example of

executing the query in the REPEATABLE READ transaction isolation level.

Listing 9-3. The locks held in the REPEATABLE READ transaction isolation level

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 701 1149 6

-- 2 702 1150 6

-- Connection 1

Connection 1> SET SESSION transaction_isolation = 'REPEATABLE-READ';

Query OK, 0 rows affected (0.2697 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0007 sec)

Connection 1> UPDATE world.city

 SET Population = 5000000

 WHERE Name = 'Sydney'

 AND CountryCode = 'AUS';

Query OK, 1 row affected (0.0024 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, COUNT(*)

 FROM performance_schema.data_locks

CHaptEr 9 rEDuCIng LoCkIng IssuEs

164

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND thread_id = 1149

 GROUP BY index_name, lock_type, lock_mode;

+-------------+-----------+---------------+----------+

| index_name | lock_type | lock_mode | COUNT(*) |

+-------------+-----------+---------------+----------+

| NULL | TABLE | IX | 1 |

| CountryCode | RECORD | X | 14 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 14 |

| CountryCode | RECORD | X,GAP | 1 |

+-------------+-----------+---------------+----------+

4 rows in set (0.0102 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0730 sec)

Connection 1> SET SESSION transaction_isolation = @@global.transaction_

isolation;

Query OK, 0 rows affected (0.0004 sec)

Fourteen record locks are taken on each of the CountryCode index and the primary

key, and one gap lock is taken on the CountryCode index. Compare this to the locks held

after executing the query in the READ COMMITTED transaction isolation level as shown in

Listing 9-4.

Listing 9-4. The locks held in the READ-COMMITTED transaction isolation level

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 703 1153 6

-- 2 704 1154 6

-- Connection 1

Connection 1> SET SESSION transaction_isolation = 'READ-COMMITTED';

Query OK, 0 rows affected (0.0003 sec)

CHaptEr 9 rEDuCIng LoCkIng IssuEs

165

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = 5000000

 WHERE Name = 'Sydney'

 AND CountryCode = 'AUS';

Query OK, 1 row affected (0.0014 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, COUNT(*)

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND thread_id = 1153

 GROUP BY index_name, lock_type, lock_mode;

+-------------+-----------+---------------+----------+

| index_name | lock_type | lock_mode | COUNT(*) |

+-------------+-----------+---------------+----------+

| NULL | TABLE | IX | 1 |

| CountryCode | RECORD | X,REC_NOT_GAP | 1 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 1 |

+-------------+-----------+---------------+----------+

3 rows in set (0.0035 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0780 sec)

Connection 1> SET SESSION transaction_isolation = @@global.transaction_

isolation;

Query OK, 0 rows affected (0.0003 sec)

Here the record locks are reduced to one lock on each of the CountryCode index and

primary key. There are no gap locks.

CHaptEr 9 rEDuCIng LoCkIng IssuEs

166

It is not all workloads that can use the READ COMMITTED transaction isolation level. If

you must have SELECT statements return the same result when executed multiple times

in the same transaction or have different queries correspond to the same point in time,

you must use REPEATABLE READ or SERIALIZABLE. However, in many cases, it is an option

to reduce the isolation level, and you can choose different isolation levels for different

transactions. If you are migrating an application from Oracle DB, you are already using

READ COMMITTED, and you can also use it in MySQL.

 Configuration
There are not many configuration options that directly affect locking, but it is good to be

familiar with those that do exist particularly as some can affect the level of mutex and

semaphore contention. This section covers splitting resources into multiple partitions,

disabling the InnoDB adaptive hash index, and limiting the number of write locks.

 Resource Partitioning
Mutex and semaphore contention arises from many threads using the same resource

concurrently. A simple but powerful way to reduce the contention is to split a single

resource into multiple parts which is exactly what has been done for the InnoDB buffer

pool, the InnoDB adaptive hash index, and the table open cache. Table 9-1 shows the

configuration options that control how many instances a resource is split into.

Table 9-1. Configuration options controlling number of instances for resources

Option Default Value Description

innodb_adaptive_

hash_index_parts

8 the number of partitions for the adaptive hash index.

the partitioning is over the indexes.

innodb_buffer_

pool_instances

1 or 8 How many parts the buffer pool is split into. the default

is 1 if the total size of the buffer pool is less than 1 giB,

otherwise 8 unless on a 32-bit Windows system.

table_open_cache_

instances

16 the number of parts for the table open cache.

CHaptEr 9 rEDuCIng LoCkIng IssuEs

167

Note For all three options, they require a restart of MysQL to change the value.

For the InnoDB buffer pool, the default number of instances depends on the

platform and the size of the buffer pool. The default is 1 if the total size is less than 1 GiB

and otherwise 8. For 32-bit Windows, the default is 1 below 1.3 GiB; otherwise, each

instance is made to be 128 MiB. The maximum number of instances is 64.

Note You may also have heard of the metadata_locks_hash_instances
option. this was deprecated in MysQL 5.7 and removed in MysQL 8.0.13. the
reason for this was a change to the implementation of metadata locks rendering
the option unnecessary.

If multiple partitions of a resource help reduce the contention, it may seem like a no

brainer to increase the number of partitions. However, it is more complex than this as

more partitions also introduce an overhead, so it is a matter of balancing this overhead

over the reduced contention on the resource latches. In the extreme of a database that

never executes more than a single concurrent query, you are usually better off with just

one partition of each resource. “Usually” because for large table open caches, multiple

partitions help making the least recently used (LRU) algorithm more efficient when it is

necessary to evict a table from the cache.

In general, you should not have the number of partitions larger than the number of

CPU cores. That said, the default values are a good starting point, and, in the end, you

will need to test with your combination of system and workload to verify the optimal

settings. In case of the adaptive hash index, you may even need to disable it altogether.

 Disabling the InnoDB Adaptive Hash Index
The adaptive hash index feature works automatically within InnoDB. If InnoDB detects

that you are using a secondary index frequently and adaptive hash indexes are enabled,

it will build a hash index on the fly of the most frequently used values. The hash index is

exclusively stored in the buffer pool and thus is not persisted when you restart MySQL. If

InnoDB detects that the memory can be used better for loading more pages into the

buffer pool, it will discard part of the hash index. This is what is meant when it is said

that it is an adaptive index: InnoDB will try to adapt it to be optimal for your queries.

CHaptEr 9 rEDuCIng LoCkIng IssuEs

168

In theory, the adaptive hash index is a win-win situation. You get the advantages of

having a hash index without the need to consider which columns you need to add it for,

and the memory usage is all automatically handled. However, there is an overhead of

having it enabled, and not all workloads benefit from it. In fact, for some workloads, the

overhead can become so large that there are severe performance issues, and in those

cases, it does not help to change the number of hash partitions.

The larger the part of the working data set that does not fit into the buffer pool, the

more changes you have to the secondary indexes, and the less the secondary indexes

are used for filtering, the more likely you will benefit from disabling the adaptive hash

index. Cases where the adaptive hash index is a problem typically manifest themselves

through a high number of waits on mutexes and rw-lock semaphores in the btr0sea.cc

file which is where the adaptive hash index search is implemented.

If you experience that the adaptive hash index becomes a bottleneck, you can enable or

disable the feature using the innodb_adaptive_hash_index option. Do be aware that while

you can enable and disable the feature dynamically, disabling the adaptive hash index evicts

all hash indexes from the buffer pool, and a warmup period is required upon re-enabling

the index. For this reason, in replication setups, it is worth disabling the adaptive hash index

in one replica first, and monitor whether your application benefits from the change before

disabling it system-wide. If you need to re-enable the adaptive hash index on the read-write

replica, consider failing over to another replica where the feature is still enabled, so the

application is less affected while the re-enabled replica goes through its warmup period.

Tip If you want to disable the adaptive hash index, do it first on a single replica,
so you avoid having all replicas going through a warmup period if you need to re-
enable the feature.

The last configuration option that will be discussed allows you to reduce the priority

of metadata write locks.

 Reducing Priority of Metadata Write Locks
By default, if there are two metadata lock requests for a table and one is a read request

and the other a write request, then the write request is given priority. This is usually fine

as writes are more intrusive than reads, so in most cases, it is best to give them priority,

so they can complete as quickly as possible.

CHaptEr 9 rEDuCIng LoCkIng IssuEs

169

However, in case of foreign keys, you may run into problems with this approach.

When you perform DDL against a table with a foreign key, the statement requests a

shared metadata lock on the parent table. If you have continued transactions holding

write locks against the parent table, the DDL statement on the child table will never be

able to proceed even if the child table is never used. So, you need some way to make

MySQL stop up and allow the read metadata lock request to move ahead.

You can do that with the max_write_lock_count option which takes a value between

1 and the maximum supported integer for your system. The default is the maximum

supported value. Every time max_write_lock_count locks have been granted, MySQL

will give priority to some read locks. This helps ensuring that read lock requests are not

starved.

You need to be careful in changing the value of max_write_lock_count as a too low

value can cause transactions with write locks – remember they are exclusive locks – to

take too long to complete. While the write transactions are outstanding, their locks

can prevent other transactions to proceed. As you can change max_write_lock_count

dynamically, keep a close eye with the system, and be prepared to revert the change, if it

causes side effects that are worse than the cure.

 Preemptive Locking
The last strategy that will be discussed is preemptive locking. If you have a complex

transaction executing several queries, it can in some cases be an advantage to execute

a SELECT ... FOR UPDATE or SELECT ... FOR SHARE query to take locks on the records

you know you will need later in the transaction. Another case where it can be useful is to

ensure you access the rows in the same order for different tasks.

Preemptive locking is particularly effective to reduce the frequency of deadlocks.

One drawback is that you will end up holding the locks for longer. Overall, preemptive

locking is a strategy that should be used sparingly, but when used for the right cases, it

can be powerful to prevent deadlocks.

CHaptEr 9 rEDuCIng LoCkIng IssuEs

170

 Summary
This chapter has looked into strategies to reduce the impact of locks with the strategies

ranging from reducing the number of locks and for how long they are held to change the

configuration to reduce the impact of locking.

Most importantly, you should not hold more locks than necessary and not hold them

for longer than required. Reducing the size of your transactions and the time it takes to

complete the transaction are two of the most powerful ways to reduce lock contention.

Furthermore, by choosing indexes appropriately, you can reduce the number of locks

required by a given statement. Similarly, the transaction isolation level impacts the

number of locks and duration of them with the READ COMMITTED transaction isolation

level being a common choice to reduce the lock impact.

With respect to deadlocks, then it is important to access records in the same order as

much as possible throughout your application. One option to ensure this is preemptive

locking, though that should be used sparingly as it increases the duration the locks are

held.

Finally, change the configuration to reduce the impact of locks. If you have mutex

contention on the buffer pool, adaptive hash index, or the table open cache, you can

partition the resource, or for the adaptive hash index, you can disable the feature

altogether. For DDL statements requesting metadata read locks due to foreign keys, it

can also be useful to limit the number of write locks that will be granted before a read

lock is given priority.

This chapter has touched on the impact of indexes and foreign keys on locking. The

next chapter will go into more detail on those topics.

CHaptEr 9 rEDuCIng LoCkIng IssuEs

171
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_10

CHAPTER 10

Indexes and Foreign Keys
In the previous chapter, you learned how indexes and foreign keys can influence locking.

This is a topic that is worth diving further into as it is important to understand the effects.

The first part of this chapter investigates how primary, secondary, ascending,

descending, and unique indexes affect locking. The second part covers foreign keys and

how they affect locking for DML and DDL statements.

 Indexes
In short indexes provide a shortcut to access a given record, so that the number of

records examined is reduced. This has a positive effect on the number of locks as only

rows accessed are subject to locking. This was what you saw in the previous chapter

when an index was added to the Name column of the world.city table for a query that

filtered on the Name column. Indexes become particularly important when you join

tables as without indexes, the number of accessed rows is the product of the number of

rows in the joined tables.

Note You may consider indexes less important with the support for hash joins in
MySQL 8. While this is to some degree true for non-locking statement, it is much
less the case for statements taking locks as excessive locking can cause lock
waits and deadlocks. As discussed in Chapter 11, locks also consume memory
in the buffer pool, so more locks mean less memory for caching data. Similarly,
reducing the number of rows accessed also reduces the turnover of pages in the
buffer pool which improves buffer pool hit rate.

This section first discusses the use of primary versus secondary indexes, then

ascending versus descending indexes, and finally unique indexes.

https://doi.org/10.1007/978-1-4842-6652-6_10#DOI

172

 Primary vs. Secondary Indexes
The most effective way to access a row is by its primary key as that ensures just the rows

that are affected by the statement are accessed. As an example, consider Listing 10-1

which adds a secondary index on the Name column of world.city and updates the

population of the city names Sydney.

Listing 10-1. Updating row by non-unique secondary index

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 713 1171 6

-- 2 714 1172 6

-- Connection 1

Connection 1> ALTER TABLE world.city

 ADD INDEX (Name);

Query OK, 0 rows affected (1.3916 sec)

Records: 0 Duplicates: 0 Warnings: 0

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = 5000000

 WHERE Name = 'Sydney';

Query OK, 1 row affected (0.0007 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND thread_id = 1171\G

ChApter 10 IndexeS And ForeIgn KeYS

173

*************************** 1. row ***************************

index_name: NULL

 lock_type: TABLE

 lock_mode: IX

 lock_data: NULL

*************************** 2. row ***************************

index_name: Name

 lock_type: RECORD

 lock_mode: X

 lock_data: 'Sydney ', 130

*************************** 3. row ***************************

index_name: PRIMARY

 lock_type: RECORD

 lock_mode: X,REC_NOT_GAP

 lock_data: 130

*************************** 4. row ***************************

index_name: Name

 lock_type: RECORD

 lock_mode: X,GAP

 lock_data: 'Syktyvkar ', 3660

4 rows in set (0.0006 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0625 sec)

Connection 1> ALTER TABLE world.city

 DROP INDEX Name;

Query OK, 0 rows affected (0.4090 sec)

Records: 0 Duplicates: 0 Warnings: 0)

Despite that the update only affects one row, there are three exclusive record level

locks with a record as well as gap lock on the Name index and lock on the row record

using the primary key.

ChApter 10 IndexeS And ForeIgn KeYS

174

If you on the other hand perform the same update but access the row using the

primary key, only the record lock on the primary key will be required as shown in

Listing 10-2.

Listing 10-2. Updating row by the primary index

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 719 1180 6

-- 2 720 1181 6

-- Connection 1

Connection 1> ALTER TABLE world.city

 ADD INDEX (Name);

Query OK, 0 rows affected (1.1499 sec)

Records: 0 Duplicates: 0 Warnings: 0

Connection 1> SELECT ID

 FROM world.city

 WHERE Name = 'Sydney';

+-----+

| ID |

+-----+

| 130 |

+-----+

1 row in set (0.0004 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = 5000000

 WHERE ID = 130;

Query OK, 1 row affected (0.0027 sec)

Rows matched: 1 Changed: 1 Warnings: 0

ChApter 10 IndexeS And ForeIgn KeYS

175

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND thread_id = 1180\G

*************************** 1. row ***************************

index_name: NULL

 lock_type: TABLE

 lock_mode: IX

 lock_data: NULL

*************************** 2. row ***************************

index_name: PRIMARY

 lock_type: RECORD

 lock_mode: X,REC_NOT_GAP

 lock_data: 130

2 rows in set (0.0007 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0410 sec)

Connection 1> ALTER TABLE world.city

 DROP INDEX Name;

Query OK, 0 rows affected (0.3257 sec)

Records: 0 Duplicates: 0 Warnings: 0

In this case, the value of the primary key (the ID column) is first obtained outside the

transaction that updates the row, and then the primary key value is used in the WHERE

clause of the UPDATE statement. The result is that the only record level lock held is an

exclusive lock on the primary key with a value of 130.

Caution determining the primary key outside the transaction does open for
the possibility of the data changing between obtaining the primary key value and
performing the update. So, you should take this as an example only.

ChApter 10 IndexeS And ForeIgn KeYS

176

Except when you need to change all rows in a table, you should aim at using an index

to access the rows. Even for full table updates, if it is not a requirement for the changes

to be applied atomically, then for large tables it is an advantage to apply the changes in

relatively small batches defined by ranges on the primary key.

Tip If you filter by functions, a great way to reduce the number of rows examined
is to add a functional index (available in MySQL 8.0.13 and later). Alternatively, in
MySQL 5.7 and later, you can add a generated column with an index.

There is more to indexes and locking though than the number of rows accessed. Both

descending indexes as you will read about next and unique indexes that follow can also

reduce the amount of locks.

 Ascending vs. Descending Indexes
MySQL 8 has support for descending indexes which can improve the performance when

accessing rows in descending order. You can use an ascending index to access rows in

descending order, so the main benefit from a descending index in such a case is that

there is no jumping forth and back in the page. Does that mean there is no benefit of

choosing the order of your index when it comes to locking?

When you use an index in the opposite order of how it stores the index records, you

will pay a small price as you will need to lock the gap at the beginning of the search.

Listing 10-3 shows the locks held when using an ascending index when increasing

the population with 10% of the three most populous cities with an existing population

between one and two million.

Listing 10-3. Updating rows in descending order by ascending index

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 836 1363 6

-- Connection 1

Connection 1> ALTER TABLE world.city

 ADD INDEX (Population);

Query OK, 0 rows affected (1.1838 sec)

ChApter 10 IndexeS And ForeIgn KeYS

177

Records: 0 Duplicates: 0 Warnings: 0

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0005 sec)

Connection 1> UPDATE world.city

 SET Population = Population * 1.10

 WHERE Population BETWEEN 1000000 AND 2000000

 ORDER BY Population DESC

 LIMIT 3;

Query OK, 3 rows affected (0.0014 sec)

Rows matched: 3 Changed: 3 Warnings: 0

-- Investigation #1

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND lock_type = 'RECORD'

 AND thread_id = 1363

 ORDER BY index_name, lock_data DESC;

+------------+-----------+---------------+---------------+

| index_name | lock_type | lock_mode | lock_data |

+------------+-----------+---------------+---------------+

| Population | RECORD | X,GAP | 2016131, 3018 |

| Population | RECORD | X | 1987996, 936 |

| Population | RECORD | X | 1977246, 2824 |

| Population | RECORD | X | 1975294, 3539 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 936 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3539 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 2824 |

+------------+-----------+---------------+---------------+

7 rows in set (0.0008 sec)

ChApter 10 IndexeS And ForeIgn KeYS

178

There are, as expected, three locks on the primary key and the Population index

with one lock per updated row. This is as optimal as it can be. The price in terms of locks

of using an ascending index is that there is also a gap lock on the index record with a

population of 2016131 and the primary key set to 3018.

Tip InnodB always appends the primary key to the end of non-unique secondary
indexes, so it is easy to go to the row from the index record. the reason for this is
that InnodB organizes the rows according to the clustered index and when there is
an explicit primary key that is used for the clustered index.

There are two more things to note about the locks in this example. First, if you

update from the end of the index (the cities with the highest population), then you will

see a record lock on the supremum pseudo-record rather than a gap lock and the high

population end of the interval. This is because the supremum pseudo-record is not a

real record, so a record lock on it is effectively just a lock on the gap before it. Second, the

exact lock types involved depends on the WHERE clause, so if you change or remove the

WHERE clause, you may see additional gap locks on the secondary index. These additional

gap locks will also be present in the same example using a descending index.

If you use a descending index, the list of locks is the same except for the gap lock.

Listing 10-4 shows an example of this.

Listing 10-4. Updating rows in descending order by descending index

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 843 1374 6

-- Connection 1

Connection 1> ALTER TABLE world.city

 ADD INDEX (Population DESC);

Query OK, 0 rows affected (0.8885 sec)

Records: 0 Duplicates: 0 Warnings: 0

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0006 sec)

ChApter 10 IndexeS And ForeIgn KeYS

179

Connection 1> UPDATE world.city

 SET Population = Population * 1.10

 WHERE Population BETWEEN 1000000 AND 2000000

 ORDER BY Population DESC

 LIMIT 3;

Query OK, 3 rows affected (0.0021 sec)

Rows matched: 3 Changed: 3 Warnings: 0

-- Investigation #1

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND lock_type = 'RECORD'

 AND thread_id = 1374

 ORDER BY index_name, lock_data DESC;

+------------+-----------+---------------+---------------+

| index_name | lock_type | lock_mode | lock_data |

+------------+-----------+---------------+---------------+

| Population | RECORD | X | 1987996, 936 |

| Population | RECORD | X | 1977246, 2824 |

| Population | RECORD | X | 1975294, 3539 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 936 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3539 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 2824 |

+------------+-----------+---------------+---------------+

6 rows in set (0.0008 sec)

The conclusion is that the main benefit from descending indexes for descending

access to the data is the performance gain for a more sequential data access rather than

from reduced locking. However, that said, if you have many descending range scans

when updating or deleting data, you will also benefit from fewer gap locks.

Another index type that will reduce locking is unique indexes.

ChApter 10 IndexeS And ForeIgn KeYS

180

 Unique Indexes
The primary purpose of a unique index compared to an equivalent non-unique index

is to add the constraint that each value is only allowed once. So, at the surface, unique

indexes seem to have little relevance for the discussion of locks beyond what has already

been mentioned. However, InnoDB can take advantage of knowing that at most one

record (except where the value is NULL) can exist for a given equity condition and use this

to reduce the amount of locking required.

As an example, consider two tables, _tmp_city1 and _tmp_city2, containing the

same subset of rows from the world.city table. The _tmp_city1 table has a non-unique

index on the Name column, whereas the _tmp_city2 table has a unique index on the

column. Then a single row is updated using a condition on the Name column. Listing 10-5

shows this.

Listing 10-5. The difference between non-unique and unique secondary indexes

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 736 1209 6

-- 2 737 1210 6

-- Connection 1

Connection 1> DROP TABLE IF EXISTS world._tmp_city1;

Query OK, 0 rows affected (0.0643 sec)

Note (code 1051): Unknown table 'world._tmp_city1'

Connection 1> CREATE TABLE world._tmp_city1

 SELECT *

 FROM world.city

 WHERE CountryCode = 'AUS';

Query OK, 14 rows affected (1.3112 sec)

Records: 14 Duplicates: 0 Warnings: 0

Connection 1> ALTER TABLE world._tmp_city1

 ADD PRIMARY KEY (ID),

 ADD INDEX (Name);

Query OK, 0 rows affected (2.5572 sec)

ChApter 10 IndexeS And ForeIgn KeYS

181

Records: 0 Duplicates: 0 Warnings: 0

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world._tmp_city1

 SET Population = 5000000

 WHERE Name = 'Sydney';

Query OK, 1 row affected (0.0007 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> DROP TABLE IF EXISTS world._tmp_city2;

Query OK, 0 rows affected (0.1361 sec)

Note (code 1051): Unknown table 'world._tmp_city2'

Connection 2> CREATE TABLE world._tmp_city2

 SELECT *

 FROM world.city

 WHERE CountryCode = 'AUS';

Query OK, 14 rows affected (0.8276 sec)

Records: 14 Duplicates: 0 Warnings: 0

Connection 2> ALTER TABLE world._tmp_city2

 ADD PRIMARY KEY (ID),

 ADD UNIQUE INDEX (Name);

Query OK, 0 rows affected (2.4895 sec)

Records: 0 Duplicates: 0 Warnings: 0

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 2> UPDATE world._tmp_city2

 SET Population = 5000000

 WHERE Name = 'Sydney';

Query OK, 1 row affected (0.0005 sec)

Rows matched: 1 Changed: 1 Warnings: 0

ChApter 10 IndexeS And ForeIgn KeYS

182

While the transactions are still ongoing, you can check the locks held by each

connection. For Connection 1, the record locks are shown in Listing 10-6 which is

investigation number 1 for the workload executed in Listing 10-5.

Listing 10-6. The record locks for Connection 1 (investigation number 1)

-- Investigation #1

-- Connection 3

Connection 3> SELECT index_name, lock_mode, lock_data

 b FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND lock_type = 'RECORD'

 AND thread_id = 1209\G

*************************** 1. row ***************************

index_name: Name

 lock_mode: X

 lock_data: 'Sydney ', 130

*************************** 2. row ***************************

index_name: PRIMARY

 lock_mode: X,REC_NOT_GAP

 lock_data: 130

*************************** 3. row ***************************

index_name: Name

 lock_mode: X,GAP

 lock_data: 'Townsville ', 142

3 rows in set (0.0094 sec)

This is what is expected based on the experience of the previous examples, a record

lock on the primary key as well as a record and gap lock on the index. For Connection 2,

only two of these locks exist as the output in Listing 10-7 of investigation number 2 from

Listing 10-5 shows.

Listing 10-7. The record locks for Connection 2 (investigation number 2)

-- Investigation #2

Connection 3> SELECT index_name, lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

ChApter 10 IndexeS And ForeIgn KeYS

183

 AND lock_type = 'RECORD'

 AND thread_id = 1210\G

*************************** 1. row ***************************

index_name: Name

 lock_mode: X,REC_NOT_GAP

 lock_data: 'Sydney ', 130

*************************** 2. row ***************************

index_name: PRIMARY

 lock_mode: X,REC_NOT_GAP

 lock_data: 130

2 rows in set (0.0006 sec)

Here only the two record locks on the secondary index and primary key are needed.

Tip For a comprehensive list of the locks taken by various statements with
and without unique indexes in InnodB, see https://dev.mysql.com/doc/
refman/en/innodb- locks- set.html.

Finally, roll back and drop the test tables:

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0714 sec)

Connection 1> DROP TABLE world._tmp_city1;

Query OK, 0 rows affected (0.7642 sec)

-- Connection 2

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.1038 sec)

Connection 2> DROP TABLE world._tmp_city2;

Query OK, 0 rows affected (1.4438 sec)

Unlike unique keys that can be used to reduce locking, foreign keys will add locks as

it is discussed next.

ChApter 10 IndexeS And ForeIgn KeYS

https://dev.mysql.com/doc/refman/en/innodb-locks-set.html
https://dev.mysql.com/doc/refman/en/innodb-locks-set.html

184

 Foreign Keys
Foreign keys are a powerful tool to ensure data consistency between tables in a database.

However, they have a drawback as to provide this safety, additional locks on the parent

and child tables are required.

The additional locks required depends on whether it is the parent or child table

of the foreign key relationship that is changed and which columns are changed. For

metadata locks, a shared lock is in most cases taken on the tables involved in the foreign

key relationship. An exception is when inserting into the parent table of a foreign key

relationship; in which case, a shared metadata lock is not taken on the child table.

At the InnoDB level, if a column included in a foreign key is modified, a shared

record-level lock is set on the table at the other end of the relationship for the row with

the new value of the foreign key column, and an intention shared lock is set for the table.

This happens whether the foreign key is violated or not. If no foreign key columns are

changed, InnoDB does not take any extra locks even if the column is used for filtering.

To understand how this affects you, it is worth considering a couple of examples.

They both use the sakila.inventory table which has two foreign keys to the film and

store tables. At the same time, it is the parent table for a foreign key from the film_

rental table. This is shown in Figure 10-1.

In the figure only the columns involved in the primary keys and foreign keys are

included. First an example of updating a row in the inventory table will be discussed and

then a DDL statement.

Figure 10-1. The sakila.inventory table and its foreign key relationships

ChApter 10 IndexeS And ForeIgn KeYS

185

 DML Statement
As an example of the locks caused by foreign keys for DML statements, consider an

UPDATE statement moving a film from one store to the other. The update is by the primary

key with an example of this shown in Listing 10-8.

Listing 10-8. Updating a row in a table with foreign keys relationships

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 814 1329 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE sakila.inventory

 SET store_id = 1

 WHERE inventory_id = 4090;

Query OK, 1 row affected (0.0008 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Because of the foreign keys, this simple single table and row update takes a number

of locks across a large number of tables in the sakila database. Listing 10-9 shows the

InnoDB locks caused by the statement (this is investigation number 1).

Listing 10-9. The InnoDB data locks caused by the UPDATE statement

-- Investigation #1

-- Connection 2

Connection 2> SELECT object_schema, object_name, lock_type,

 index_name, lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE thread_id = 1329\G

ChApter 10 IndexeS And ForeIgn KeYS

186

*************************** 1. row ***************************

object_schema: sakila

 object_name: inventory

 lock_type: TABLE

 index_name: NULL

 lock_mode: IX

 lock_data: NULL

*************************** 2. row ***************************

object_schema: sakila

 object_name: inventory

 lock_type: RECORD

 index_name: PRIMARY

 lock_mode: X,REC_NOT_GAP

 lock_data: 4090

*************************** 3. row ***************************

object_schema: sakila

 object_name: store

 lock_type: TABLE

 index_name: NULL

 lock_mode: IS

 lock_data: NULL

*************************** 4. row ***************************

object_schema: sakila

 object_name: store

 lock_type: RECORD

 index_name: PRIMARY

 lock_mode: S,REC_NOT_GAP

 lock_data: 1

4 rows in set (0.0102 sec)

In this case, InnoDB takes an intention shared lock on the store tables as well as

a shared lock on the record with the primary keys set 1. There are no locks on the film

table as the UPDATE statement does not change the value of the film_id column.

For the metadata locks, it is more complicated as can be seen from Listing 10-10

(investigation number 2).

ChApter 10 IndexeS And ForeIgn KeYS

187

Listing 10-10. The metadata locks caused by the UPDATE statement

-- Investigation #2

Connection 2> SELECT object_type, object_schema, object_name,

 column_name, lock_type, lock_duration

 FROM performance_schema.metadata_locks

 WHERE owner_thread_id = 1329

 ORDER BY object_type, object_schema, object_name,

 column_name, lock_type\G

*************************** 1. row ***************************

 object_type: SCHEMA

object_schema: sakila

 object_name: NULL

 column_name: NULL

 lock_type: INTENTION_EXCLUSIVE

lock_duration: TRANSACTION

*************************** 2. row ***************************

 object_type: TABLE

object_schema: sakila

 object_name: customer

 column_name: NULL

 lock_type: SHARED_READ

lock_duration: TRANSACTION

*************************** 3. row ***************************

 object_type: TABLE

object_schema: sakila

 object_name: film

 column_name: NULL

 lock_type: SHARED_READ

lock_duration: TRANSACTION

*************************** 4. row ***************************

 object_type: TABLE

object_schema: sakila

 object_name: inventory

ChApter 10 IndexeS And ForeIgn KeYS

188

 column_name: NULL

 lock_type: SHARED_WRITE

lock_duration: TRANSACTION

*************************** 5. row ***************************

 object_type: TABLE

object_schema: sakila

 object_name: payment

 column_name: NULL

 lock_type: SHARED_WRITE

lock_duration: TRANSACTION

*************************** 6. row ***************************

 object_type: TABLE

object_schema: sakila

 object_name: rental

 column_name: NULL

 lock_type: SHARED_WRITE

lock_duration: TRANSACTION

*************************** 7. row ***************************

 object_type: TABLE

object_schema: sakila

 object_name: staff

 column_name: NULL

 lock_type: SHARED_READ

lock_duration: TRANSACTION

*************************** 8. row ***************************

 object_type: TABLE

object_schema: sakila

 object_name: store

 column_name: NULL

 lock_type: SHARED_READ

lock_duration: TRANSACTION

8 rows in set (0.0007 sec)

You will not always see the INTENTION_EXCLUSIVE lock on the sakila schema, so

your result may only include the seven table level metadata locks.

ChApter 10 IndexeS And ForeIgn KeYS

189

This shows that there is a SHARED_READ lock on the film and store tables, and

a SHARED_WRITE on the rental table which is expected from the discussion this far.

However, there are several more metadata locks. The extra locks are because the rental

table’s foreign key to inventory is ON UPDATE CASCADE. That makes the metadata locks

cascade as well to the foreign key relations for the rental table. The lesson of the

example is that with foreign keys, particularly cascading relations, you need to be aware

that the number of metadata locks quickly increases.

Finally, roll back the transaction:

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.1104 sec)

 DDL Statement
When you execute DDL statements against a table with a foreign key, then a SHARED_

UPGRADABLE metadata lock is taken for each of the parent and child tables of the modified

table. An example of this is shown in Listing 10-11.

Listing 10-11. Performing DDL on a table with foreign key relations

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 820 1340 6

-- 2 821 1341 6

-- Connection 1

Connection 1> OPTIMIZE TABLE sakila.inventory;

-- Connection 2

Connection 2> SELECT object_name, lock_type, lock_duration

 FROM performance_schema.metadata_locks

 WHERE owner_thread_id = 1340

 AND object_type = 'TABLE';

ChApter 10 IndexeS And ForeIgn KeYS

190

+---------------+-------------------+---------------+

| object_name | lock_type | lock_duration |

+---------------+-------------------+---------------+

| inventory | SHARED_NO_WRITE | TRANSACTION |

| film | SHARED_UPGRADABLE | STATEMENT |

| rental | SHARED_UPGRADABLE | STATEMENT |

| store | SHARED_UPGRADABLE | STATEMENT |

| #sql-8490_334 | EXCLUSIVE | STATEMENT |

+---------------+-------------------+---------------+

5 rows in set (0.0014 sec)

In this case the cascading foreign key on the rental table does not cause further

metadata locks as there is no update to cascade. The #sql-8490_334 table is the build

table for the OPTIMIZE TABLE statement, and the name depends on the id of the mysqld

process and the process list id of the connection executing the statement.

The conclusion is that while foreign keys are very important to ensure data

consistency, in high concurrency workloads, they can become a bottleneck due to the

additional locking (and time spend on constraint validation). However, do not by default

dismiss foreign keys as you will risk the integrity of your data, and they are also useful

for documenting the relationship between tables; the figure earlier in this chapter was

automatically generated by MySQL Workbench based on the foreign keys.

Caution do not dismiss foreign keys because of the additional locking as they
are necessary to ensure data consistency. If they become prohibitively expensive
for your workload, you will need to ensure the data consistency in your application
which is far from a trivial task. If you do not have good enough data integrity
constraints, then you may end up returning invalid data to the users.

 Summary
This chapter has taken a deep dive into the effects of indexes and foreign keys on locking.

Indexes can help reduce locking, while foreign keys add locking.

The more selective an index you use, the fewer rows are accessed which translates

into less locking. Thus, primary key access is the most optimal followed by unique

ChApter 10 IndexeS And ForeIgn KeYS

191

indexes. Accessing using an index that is stored in the same order as you access the rows

also helps.

For foreign keys, they do require additional locks to maintain data integrity. InnoDB

adds a shared lock on the rows in the other end of the foreign key when modifying

columns included in the foreign key, and an intention shared lock is set for the table.

Additionally, a shared metadata lock is taken in most cases on the tables involved in the

foreign key relationship. For cascading foreign keys, the metadata locks also cascade.

That concludes the discussion with the primary focus being on locks. There is

another side to the coin though, transactions. Transactions are relevant both in the

direct context of concurrency and with respect to locks. The next chapter starts out

looking at transactions in general.

ChApter 10 IndexeS And ForeIgn KeYS

193
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_11

CHAPTER 11

Transactions
Transactions are the big brother of statements. They group multiple changes together

whether in a single statement or several statements, so they are applied or abandoned

as a single unit. Mostly transactions are not much more than an afterthought and just

considered when it is necessary to apply several statements together. That is a bad way to

consider transactions. They are very important to ensure data integrity, and when used

wrong, they can cause severe performance issues.

This chapter starts out discussing what transactions and the ACID concept are

and then moves on to discussing why you need to take transactions seriously from

a performance point of view by reviewing the impacts of transactions on locks and

performance. Finally, it is discussed how the group commit feature can improve the

performance of high concurrency systems.

 Transactions and ACID
At the simplest point of view, a transaction is a container that includes one or more

statements. However, that is a too simplistic view as a transaction also has properties of

its own. Most importantly, it is the main tool to accomplishing atomicity, consistency,

isolation, and durability (ACID). This section takes a closer look at each of these four

properties.

 Atomicity
The concept of atomicity means that all changes in a transaction are either committed or

rolled back. This is where the idea of a container comes into play, so that all statements

are treated as a unit of work – or in other words, a transaction is atomic.

https://doi.org/10.1007/978-1-4842-6652-6_11#DOI

194

The classic example of why atomicity is important is a financial transaction between

two bank accounts. An amount is withdrawn from the payer’s account and inserted into

the receiver’s account. Without atomicity, you can end up with the money withdrawn

but never inserted leaving one of the two parties out of pocket. That a transaction is

atomic guarantees that if the money is withdrawn, the receiver also receives the money

on their account.

 Consistency
That the database fulfills the consistency property means that there are checks in

place to ensure that if a transaction commits successfully, then the data is consistent.

What consistency means is largely defined by the business logic. An example is that

you cannot create a bank account for a nonexisting entity. Inside the database, it is the

job of the constraints, including foreign keys, to ensure data consistency. By using a

transaction, due to its atomic behavior, even if a constraint fails in the second or later

step, then the whole transaction can be reverted (rolled back) and the database is left in

its original and consistent state.

In some databases, the constraint checks can be deferred until the time the

transaction is committed. If you consider the example where you are not allowed to have

a bank account for a nonexisting entity, deferred constraints allows you to first create the

account and then later - but within the same transaction - register the entity owning the

account. Deferred constraints are primarily useful in connection with circular relations

such as adding a group that must have a default group member, but since the member

must belong to a group, it is necessary to temporarily relax the constraints while adding

the group and its initial members.

Note The use of deferred constraints is a debated topic, and it can be argued
that it violates the principles of relational database theory. For example, C.J. Date
argues that constraints must be satisfied at statement boundaries; see https://
www.brcommunity.com/articles.php?id=b065b.

InnoDB does not support deferred constraints but does support disabling foreign key

checks by explicitly disabling the foreign_key_checks variable which can be changed

both at the global and session scope.

ChapTer 11 TransaCTions

https://www.brcommunity.com/articles.php?id=b065b
https://www.brcommunity.com/articles.php?id=b065b

195

Tip Disabling the foreign key checks can be useful when performing bulk load
where you already have ensured that the data is consistent.

Unique key constraint checks cannot be disabled for InnoDB as the unique_checks

option only dictates that a check is not required; InnoDB will still do it in some cases. (As

an aside, the NDBCluster does defer some constraint checks till the time of commit.)

 Isolation
The isolation property is what links transactions and locking. That two transactions

are isolated means that they do not interfere with each other’s view of the data. The

isolation is at the data content level; two concurrent transactions may still interfere with

each other in terms of performance and locking. MySQL, as most database systems,

implements isolation using locks, and InnoDB has the concept of transaction isolation

levels to define what isolation means. The transaction isolation levels are discussed in

more detail in the next chapter.

 Durability
That the data is durable means that data changes are not lost. In MySQL this only applies

to committed data or for XA transactions for transactions in the prepared stage. InnoDB

implements durability at the local level through the redo log and the binary log (if

enabled which is the default in MySQL 8) with an internal XA transaction being used to

ensure consistency between the two logs.

Note Xa transactions is a feature that allows distributed transactions, for
example, spanning two systems or in case of the MysQL internals to make
changes to innoDB and the binary log commit or roll back together. it works
by having a transaction manager and one or more resource managers (e.g., a
database). For more information about MysQL and Xa transactions, see https://
dev.mysql.com/doc/refman/en/xa.html.

ChapTer 11 TransaCTions

https://dev.mysql.com/doc/refman/en/xa.html
https://dev.mysql.com/doc/refman/en/xa.html

196

The commits are only guaranteed to be durable if both innodb_flush_log_at_trx_

commit and sync_binlog are set to 1 (the default). To ensure durability if the local

system crashes, you must also ensure that the binary log events have replicated to at

least one replica. MySQL Group Replication or MySQL InnoDB Cluster is the best way to

achieve this.

Tip replication is beyond the scope of this book. For an introduction to
MysQL Group replication and innoDB Cluster, see, for example, Introducing
InnoDB Cluster by Charles Bell (apress) (https://www.apress.com/gp/
book/9781484238844).

 Impact of Transactions
Transactions may seem as an innocent concept if you think of them as containers used

to group queries. However, it is important to understand that since transactions provide

atomicity for groups of queries, the longer a transaction is active, the longer resources

associated with the queries are held, and the more work done in a transaction, the more

resources are required. What resources are used by queries that remain in use until the

transaction has been committed? The main two are locks and undo logs.

Tip innoDB supports read-only transactions which have a lower overhead than
read-write transactions. For auto-committing single-statement transactions,
innoDB will try to determine if the statement is read-only automatically. For multi-
statement transactions, you can specify explicitly that it is a read-only transaction,
when you start it: START TRANSACTION READ ONLY;

 Locks
When the query executes, it takes locks, and when you use the default transaction

isolation level – REPEATABLE READ – all locks are kept until the transaction is committed

or rolled back. When you use the READ COMMITTED transaction isolation level, some

locks may be released, but at least those involving the changed records are kept. Locks

themselves are a resource, but it also requires memory to store the information about the

ChapTer 11 TransaCTions

https://www.apress.com/gp/book/9781484238844
https://www.apress.com/gp/book/9781484238844

197

locks. You may not think much of this for a normal workload, but huge transactions can

end up using so much memory that the transaction fails with the ER_LOCK_TABLE_FULL

error:

ERROR: 1206: The total number of locks exceeds the lock table size

As it can be seen from the warning message logged to the error log (more shortly),

the memory required for the locks is taken from the buffer pool. Thus, the more locks

you hold and the longer they are held, the less memory is available for caching data and

indexes.

Caution having a transaction aborted because it has used all the lock memory is
a quadruple whammy. First, it would have taken a while to update enough rows to
use enough lock memory to trigger the error. That work has been wasted. second,
because of the number of changes required, it is likely going to take a very long
time to roll back the transaction. Third, while the lock memory is used, innoDB is
effectively in read-only mode (some small transactions may be possible), and the
lock memory is not released until the rollback has completed. Fourth, there is very
little space left in the buffer pool to cache data and indexes.

The error is preceded by a warning in the error log saying that more than 67% of the

buffer pool is used for locks or the adaptive hash index:

2020-06-08T10:47:11.415127Z 10 [Warning] [MY-011958] [InnoDB] Over 67

percent of the buffer pool is occupied by lock heaps or the adaptive hash

index! Check that your transactions do not set too many row locks. Your

buffer pool size is 7 MB. Maybe you should make the buffer pool bigger?

Starting the InnoDB Monitor to print diagnostics, including lock heap and

hash index sizes.

The warning is followed by regular repeating outputs of the InnoDB monitor, so you

can determine which transactions are the culprits.

One lock type that is often neglected when it comes to transactions is the metadata

lock. When a statement queries a table, a shared metadata lock is taken, and that metadata

lock is held until the end of the transaction. While there is a metadata lock on a table, no

connections can execute any DDL statements – including OPTIMIZE TABLE – against

ChapTer 11 TransaCTions

198

the table. If a DDL statement is blocked by a long-running transaction, it will in turn block

all new queries from using that table. Chapter 14 will show an example of investigating

such an issue.

The locks are held while the transaction is active. The transaction can however still

have an impact even after it has completed through the undo logs.

 Undo Logs
The changes that have been made during the transaction must also be stored as they

are required, if you choose to roll back the transaction. This is easy to understand. More

surprising is that even a transaction that has made no changes also can make undo

information from other transactions stay around. This happens when the transaction

requires a read view (a consistent snapshot), which is the case for the duration of the

transaction when using the REPEATABLE READ transaction isolation level. The read view

means that the transaction will return the row data that corresponds to the time when

the transaction was started no matter whether other transactions change the data. In

order to be able to deliver that, it is necessary to keep the old values of the rows that

change during the lifetime of the transaction. Long-running transactions with a read

view are the most common reason for ending up with huge undo logs, which in MySQL

5.7 and earlier could mean the ibdata1 file ended up being large. (In MySQL 8, the undo

logs are always stored in separate undo tablespaces that can be truncated.)

Tip The READ COMMITTED transaction isolation level is much less prone to large
undo logs as the read views are only maintained for the duration of a statement.

The size of the active part of the undo log is measured in the history list length. The

history list length is the number of transactions committed where the undo log has not

yet been purged. This means that you cannot use the history list length to get a measure

of the total amount of row changes. What it does tell you is how many units of old

rows (one unit per transaction) there is in the linked list of changes that must be taken

into consideration when you execute a query. The longer this linked list is, the more

expensive it becomes to find the correct version of each row. In the end, if you have a

large history list, it can severely impact the performance of all queries.

ChapTer 11 TransaCTions

199

Note The issue with the history list length is one of the biggest issues creating
backups of large databases using logical backup tools such as mysqlpump and
mysqldump using a single transaction to get a consistent backup. The backup can
cause the history list length to become very large if there are many transactions
committed during the backup.

What constitutes a large history list length? There are no firm rules about that – just

that the smaller, the better. Typically, performance issues start to show up when the

list is some thousand to a million transactions long, but the point where it becomes a

bottleneck depends on the transactions committed in the undo logs and the workload

while the history list length is large.

InnoDB automatically purges the history list in the background when the oldest

parts are no longer needed. There are two options to control the purge as well as two to

influence what happens, when the purge cannot be done. The options are

• innodb_purge_batch_size: The number of undo log pages that are

purged per batch. The batch is divided among the purge threads. This

option is not intended to be changed on production systems. The

default is 300 with valid values between 1 and 5000.

• innodb_purge_threads: The number of purge threads to use in

parallel. A higher parallelism can be useful if the data changes span

many tables. On the other hand, if all changes are concentrated on

few tables, a low value is preferred. Changing the number of purge

threads requires a restart of MySQL. The default is 4 with valid values

between 1 and 32.

• innodb_max_purge_lag: When the history list length is longer than

the value of innodb_max_purge_lag, a delay is added to operations

changing data to reduce the rate the history list is growing at

the expense of higher statement latencies. The default value is 0

which means that a delay will never be added. Valid values are

0–4294967295.

• innodb_max_purge_lag_delay: The maximum delay that can be

added to DML queries when the history list length is larger than

innodb_max_purge_lag.

ChapTer 11 TransaCTions

200

It is usually not necessary to change any of these settings; however, in special

circumstances, it can be useful. If the purge threads cannot keep up, you can try to

change the number of purge threads based on the number of tables that get modified;

the more tables that are modified, the more purge threads are useful. When you change

the number of purge threads, it is important to monitor the effect starting with a baseline

before the change, so you can see whether the change makes an improvement.

The maximum purge lag options can be used to slow down DML statements

modifying data. It is mostly useful when writes are limited to specific connections and

delays do not cause additional write threads to be created in order to maintain the same

throughput.

 Group Commit
Remember that for the D in ACID (durability) to be true for InnoDB, you need to keep

the innodb_flush_log_at_trx_commit and sync_binlog settings at their default value

of 1 so the changes made by a transaction are synced to disk as part of the commit.

While this is great to ensure you do not lose changes that have been confirmed to be

committed in case of a crash, it does come at a cost performance wise as often the flush

performance of disks can become the bottleneck.

The group commit feature exists to reduce this performance impact by slightly

delaying the commits and group all the commits (thus the name) occurring during the

delay and flush them to disk at the same time. Essentially, the group commit sacrifices

a little latency for a higher throughput. In systems with a high concurrency of data

changes, the group commit can greatly improve the performance when sync_binlog =

1 is used.

The group commit feature is controlled using two configuration options:

• binlog_group_commit_sync_delay: The delay in milliseconds

for waiting for more transactions to commit. Allowed values are

0–1000000 with 0 being the default. The larger the value, the more

transactions will be committed together and thus the fewer fsync()

calls.

• binlog_group_commit_sync_no_delay_count: The maximum

number of transactions to allow in the group commit queue before

completing the group commit. If this option is set to a value larger

ChapTer 11 TransaCTions

201

than 0, the commits may occur more often than set by binlog_

group_commit_sync_delay. A value of 0 means an unlimited number

of commits may be queued. Allowed values are 0–1000000 with 0

being the default.

If you can accept a small delay when committing your transactions, it is

recommended to increase binlog_group_commit_sync_delay to reduce the flush rate.

In principle, the larger the value, the larger the throughput, but you should of course

take into consideration the maximum acceptable increase in commit latency for your

workload. You can use the binlog_group_commit_sync_no_delay_count to avoid the

number of transactions becoming too large in each group commit.

If you have replication enabled, then increasing binlog_group_commit_sync_delay

can also have a positive performance effect on the replicas as the more transactions

that are committed together, the more effective the LOGICAL_CLOCK algorithm for

parallel replication (the slave_parallel_type option) becomes. (If you have binlog_

transaction_dependency_tracking = WRITESET, the effect is less as transactions can be

parallelized across group commits.) You must set the binlog_group_commit_sync_delay

on the replication source to improve the parallel replication performance on the replicas.

 Summary
Transactions are an important concept in databases. They help ensure that you can

apply changes to several rows as a unit and that you can choose whether to apply the

changes or roll them back.

This chapter started out discussing what transactions and the ACID concept are.

ACID stands for atomicity, consistency, isolation, and durability, and transactions are

directly involved in ensuring the first three of these properties and partly for durability.

Isolation is in the context of concurrency interesting as it is what ensures that you can

safely execute multiple transactions concurrently. In MySQL, isolation is implemented

through locking.

The next section discussed why it is important to be aware of how transactions are

being used. While they as such can be considered a container for changes, locks are held

until the transaction is committed or rolled back, and they can block the undo logs from

being purged. Both locks and large undo logs can affect the performance of queries even

if they are not executed in one of the transactions causing the high number of locks or

large number of undo logs. Locks use memory, which is taken from the buffer pool, so

ChapTer 11 TransaCTions

202

there is less memory available for caching data and indexes. A large amount of undo logs

as measured by the history list length means that more row versions must be considered

when InnoDB executes statements.

Finally, the concept of group commits was discussed. When flushing changes to disk

at each commit, the group commit feature can be used to reduce the number of fsync()

calls by completing several commits together. A nice side effect of group replication

is that it can improve the performance of the LOGICAL_CLOCK algorithm for parallel

replication.

The concept of transaction isolation levels was mentioned a few times in this

chapter. The next chapter goes into more detail how the four supported transaction

isolation levels work and how each level affects locking.

ChapTer 11 TransaCTions

203
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_12

CHAPTER 12

Transaction Isolation
Levels
In the previous chapter, you learned that isolation is an important property of

transactions. As it turns out, it is not so straightforward to answer whether two

transactions are isolated as the answer depends on what degree of isolation is required.

The degree of isolation is defined through the transaction isolation levels.

InnoDB supports the four transaction isolation levels defined by the SQL:1992

standard1, and they are in descending degree of isolation: SERIALIZABLE, REPEATABLE

READ, READ COMMITTED, and READ UNCOMMITTED. The repeatable read transaction isolation

level is the default. This chapter goes through each of these isolation levels and discusses

how they work and their impact on locking.

To compare the locks taken when updating rows in the different transaction isolation

levels, an example of updating the cities in the district Bratislava in Slovakia will be used.

There are three cities in the world.city table for Slovakia:

mysql> SELECT ID, Name, District

 FROM world.city

 WHERE CountryCode = 'SVK';

+------+------------+--------------------+

| ID | Name | District |

+------+------------+--------------------+

| 3209 | Bratislava | Bratislava |

| 3210 | Košice | Východné Slovensko |

| 3211 | Prešov | Východné Slovensko |

+------+------------+--------------------+

3 rows in set (0.0032 sec)

1 http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt – if you are interested in
buying a copy, see, for example, https://modern-sql.com/standard for links.

https://doi.org/10.1007/978-1-4842-6652-6_12#DOI
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://modern-sql.com/standard

204

The UPDATE statement can use the index on CountryCode to narrow down the search to

the three cities and then use a non-indexed filter on District to find the one city matching

the district. This will help expose the different amounts of locks for the SERIALIZABLE,

REPEATABLE READ, and READ COMMITTED transaction isolation levels. For SERIALIZABLE and

REPEATBLE READ, additionally, a test using a SELECT statement will be used.

After each of the examples, you need to roll back the transaction to return the

database to its original state:

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.3022 sec)

With that said, you are ready to explore the four transaction isolation levels.

 Serializable
The SERIALIZABLE isolation level is the strictest available. Except for SELECT statements

with autocommit enabled (and no explicit transaction has been started), all statements

take locks. For SELECT statements that is equivalent to adding FOR SHARE. This ensures

that all aspects of the transaction is repeatable but also means that it is the transaction

isolation level that takes most locks. Listing 12-1 shows an example of the locks taken by

a SELECT statement.

Listing 12-1. Read locking in the SERIALIZABLE transaction isolation level

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 967 1560 6

-- 2 968 1561 6

-- Connection 1

Connection 1> SET transaction_isolation = 'SERIALIZABLE';

Query OK, 0 rows affected (0.0007 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Chapter 12 transaCtion isolation levels

205

Connection 1> SELECT ID, Name, Population

 FROM world.city

 WHERE CountryCode = 'SVK'

 AND District = 'Bratislava';

+------+------------+------------+

| ID | Name | Population |

+------+------------+------------+

| 3209 | Bratislava | 448292 |

+------+------------+------------+

1 row in set (0.0006 sec)

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND lock_type = 'RECORD'

 AND thread_id = 1560

 ORDER BY index_name, lock_data DESC;

+-------------+-----------+---------------+-------------+

| index_name | lock_type | lock_mode | lock_data |

+-------------+-----------+---------------+-------------+

| CountryCode | RECORD | S,GAP | 'SVN', 3212 |

| CountryCode | RECORD | S | 'SVK', 3211 |

| CountryCode | RECORD | S | 'SVK', 3210 |

| CountryCode | RECORD | S | 'SVK', 3209 |

| PRIMARY | RECORD | S,REC_NOT_GAP | 3211 |

| PRIMARY | RECORD | S,REC_NOT_GAP | 3210 |

| PRIMARY | RECORD | S,REC_NOT_GAP | 3209 |

+-------------+-----------+---------------+-------------+

7 rows in set (0.0009 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

Chapter 12 transaCtion isolation levels

206

The query uses a secondary index and ends up locking the primary key and

CountryCode records of all records that are read. Additionally, there is a gap lock after the

last index record for Slovakia. All the locks are shared locks.

Listing 12-2 instead considers an UPDATE statement that updates a subset of the rows

that are examined.

Listing 12-2. Locking in the SERIALIZABLE transaction isolation level

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 971 1567 6

-- 2 972 1568 6

-- Connection 1

Connection 1> SET SESSION TRANSACTION ISOLATION LEVEL SERIALIZABLE;

Query OK, 0 rows affected (0.0004 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = Population * 1.10

 WHERE CountryCode = 'SVK'

 AND District = 'Bratislava';

Query OK, 1 row affected (0.0006 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND lock_type = 'RECORD'

 AND thread_id = 1567

 ORDER BY index_name, lock_data DESC;

Chapter 12 transaCtion isolation levels

207

+-------------+-----------+---------------+-------------+

| index_name | lock_type | lock_mode | lock_data |

+-------------+-----------+---------------+-------------+

| CountryCode | RECORD | X,GAP | 'SVN', 3212 |

| CountryCode | RECORD | X | 'SVK', 3211 |

| CountryCode | RECORD | X | 'SVK', 3210 |

| CountryCode | RECORD | X | 'SVK', 3209 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3211 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3210 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3209 |

+-------------+-----------+---------------+-------------+

7 rows in set (0.0007 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0576 sec)

The statement updates a single city (with ID = 3209) but holds locks on all three

Slovakian cities both on the primary key and the CountryCode index as well as a gap lock

after the last index record.

Notice also how the SET TRANSACTION statement is used here to set the transaction

isolation level instead of setting the transaction_isolation variable. The two methods

are interchangeable though SET SESION TRANSACTION also supports setting whether it is

a read-only or read-write transaction. If you use the SET TRANSACTION statement without

neither the GLOBAL nor SESSION scope, then it only applies to the next transaction.

This transaction isolation level is not used very often, but it can be useful when

investigating locking problems or when working with XA transactions. Other than

SELECT statements taking locks, the isolation level is the same as REPEATABLE READ which

is discussed next.

 Repeatable Read
The REPETABLE READ isolation level is the default in InnoDB. As the name suggests, it

ensures that if you repeat a read statement, then the same result is returned. This is also

known as a consistent read, and it is implemented through read views called snapshots.

Chapter 12 transaCtion isolation levels

208

The snapshot is established when the first statement is executed within the transaction,

or if the WITH CONSISTENT SNAPSHOT modifier is given with START TRANSACTION, then at

the start of the transaction.

An important side effect of the consistent snapshots is that it is possible to have non-

locking reads while still retrieving the same data repeatably. This extends to include all

InnoDB tables, so executing multiple statements against different tables return data that

corresponds to the same point in time. The REPEATABLE READ transaction isolation level

with its consistent snapshots is also what allows for online consistent logical backups

created with tools like mysqlpump and mysqldump.

While REPEATABLE READ has some nice isolation properties without being as intrusive

as SERIALIZABLE, there is still a significant level of locking going on. Listing 12-3 shows a

repeat of the example of selecting the cities in the district of Bratislava in Slovakia.

Listing 12-3. Read locking in the REPEATABLE READ transaction isolation level

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 973 1571 6

-- 2 974 1572 6

-- Connection 1

Connection 1> SET transaction_isolation = 'REPEATABLE-READ';

Query OK, 0 rows affected (0.0004 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT ID, Name, Population

 FROM world.city

 WHERE CountryCode = 'SVK'

 AND District = 'Bratislava';

+------+------------+------------+

| ID | Name | Population |

+------+------------+------------+

| 3209 | Bratislava | 448292 |

+------+------------+------------+

1 row in set (0.0006 sec)

Chapter 12 transaCtion isolation levels

209

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND lock_type = 'RECORD'

 AND thread_id = 1571

 ORDER BY index_name, lock_data DESC;

0 rows in set (0.0006 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0004 sec)

In this case, no locks are held which is the important difference between the

SERIALIZABLE and REPEATABLE READ transaction isolation levels. Listing 12-4 shows how

it looks for the UPDATE statement.

Listing 12-4. Locking in the REPEATABLE READ transaction isolation level

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 975 1574 6

-- 2 976 1575 6

-- Connection 1

Connection 1> SET transaction_isolation = 'REPEATABLE-READ';

Query OK, 0 rows affected (0.0004 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = Population * 1.10

 WHERE CountryCode = 'SVK'

 AND District = 'Bratislava';

Query OK, 1 row affected (0.0007 sec)

Chapter 12 transaCtion isolation levels

210

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND lock_type = 'RECORD'

 AND thread_id = 1574

 ORDER BY index_name, lock_data DESC;

+-------------+-----------+---------------+-------------+

| index_name | lock_type | lock_mode | lock_data |

+-------------+-----------+---------------+-------------+

| CountryCode | RECORD | X,GAP | 'SVN', 3212 |

| CountryCode | RECORD | X | 'SVK', 3211 |

| CountryCode | RECORD | X | 'SVK', 3210 |

| CountryCode | RECORD | X | 'SVK', 3209 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3211 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3210 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3209 |

+-------------+-----------+---------------+-------------+

7 rows in set (0.0010 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.3036 sec)

These are the same seven locks as were held in SERIALIZABLE.

One important caveat of consistent snapshots that you need to be aware of is

that they only apply for reads. This means that if you read from a table, then another

transaction commits changes to rows so they match the filter used in the first

transaction, then the first transaction will be able to modify these rows, and afterward,

they will be included in snapshot. Listing 12-5 shows an example of this. There are two

investigations available that you can explore if you want to take a look at the locks held.

Chapter 12 transaCtion isolation levels

211

Listing 12-5. Consistent reads mixed with DML

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 977 1578 6

-- 2 978 1579 6

-- Connection 1

Connection 1> SET transaction_isolation = 'REPEATABLE-READ';

Query OK, 0 rows affected (0.0005 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0004 sec)

Connection 1> SELECT ID, Name, Population

 FROM world.city

 WHERE CountryCOde = 'BHS';

+-----+--------+------------+

| ID | Name | Population |

+-----+--------+------------+

| 148 | Nassau | 172000 |

+-----+--------+------------+

1 row in set (0.0014 sec)

-- Connection 2

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0004 sec)

Connection 2> INSERT INTO world.city

 VALUES (4080, 'Freeport', 'BHS',

 'Grand Bahama', 50000);

Query OK, 1 row affected (0.0022 sec)

Connection 2> COMMIT;

Query OK, 0 rows affected (0.0983 sec)

-- Connection 1

Connection 1> SELECT ID, Name, Population

 FROM world.city

 WHERE CountryCOde = 'BHS';

Chapter 12 transaCtion isolation levels

212

+-----+--------+------------+

| ID | Name | Population |

+-----+--------+------------+

| 148 | Nassau | 172000 |

+-----+--------+------------+

1 row in set (0.0006 sec)

Connection 1> UPDATE world.city

 SET Population = Population * 1.10

 WHERE CountryCOde = 'BHS';

Query OK, 2 rows affected (0.0012 sec)

Rows matched: 2 Changed: 2 Warnings: 0

Connection 1> SELECT ID, Name, Population

 FROM world.city

 WHERE CountryCOde = 'BHS';

+------+----------+------------+

| ID | Name | Population |

+------+----------+------------+

| 148 | Nassau | 189200 |

| 4080 | Freeport | 55000 |

+------+----------+------------+

2 rows in set (0.0006 sec)

When Connection 1 queries all cities in the Bahamas (CountryCode = 'BHS') the

first time, only the city of Nassau is returned. Then Connection 2 inserts a row for the

city of Freeport and commits its transaction. When Connection 1 repeats its SELECT

statement, it is still only Nassau that is returned. So far so good. This is what is expected

of the consistent read feature. However, when Connection 1 increases the population

of all cities in Bahamas with 10%, then two rows are updated, and a subsequent SELECT

reveals that Freeport is now part of Connection 1’s read view.

This behavior is not a bug! It happens because reads are non-locking in the

REPEATABLE READ transaction isolation level. If you want to avoid this behavior, you

either need to explicitly request a shared lock in Connection 1 using the FOR SHARE

clause or you need to change to the SERIALIZABLE transaction isolation level.

Chapter 12 transaCtion isolation levels

213

The price to pay for consistent reads is a relatively large number of locks and that

InnoDB must maintain several versions of the data. Remember from the discussion

of undo logs that as long as there is still a read view that was started before a given

transaction, then the undo log for the transaction must be kept, and that it is expensive

to track of the versions of the same rows.

If you do not need consistent reads, the READ COMMITTED transaction isolation level is

a good choice.

 Read Committed
If you are used to other relational database systems such as Oracle DB or PostgreSQL,

then you have probably been using the READ COMMITTED transaction isolation level. The

NDBCluster storage engine in MySQL also uses READ COMMITTED. This isolation level is

popular as it for many workloads provides strong enough isolation and it has reduced

locking compared to the REPEATABLE READ and SERIALIZABLE isolation levels.

The main differences from REPEATABLE READ to READ COMMITTED are

• READ COMMITTED does not support consistent reads (though single

statements still return consistent results). Because the lifetime of

the read view is only that of the statement, InnoDB can faster purge

old undo logs. This advantage is most significant for long-running

transactions.

• The locks taken by DML statements on records that are examined

but not modified are released as soon as the WHERE clause has been

evaluated.

• READ COMMITTED will only take gap locks in connection with checking

foreign keys and unique key constraints as well as in connection with

page splits. A page split occurs when an InnoDB page is close to full

and a record will have to be inserted in the middle of the page or an

existing record grows, so there is no longer room in the page.

• For WHERE clauses resolved using a non-indexed column, the semi-

consistent read feature allows transactions to use the last committed

values of a row to match the filter even if the row is locked.

Chapter 12 transaCtion isolation levels

214

The lack of gap locks means that so-called phantom rows can occur. Phantom rows

happen when the same statement is executed twice within the same transaction and it

returns different rows even for locking statements such as SELECT ... FOR SHARE.

THE ILLUSIVE GAP LOCK

one of the more difficult hunts for a MysQl bug occurred in MysQl 5.7 and pre-Ga MysQl

8. When using Xa transactions in a replication setup, there were random occurring lock wait

timeouts and deadlocks on the replicas caused solely by the replication traffic. how could that

be when there were not any lock issues on the replication source?

the issue consisted of various parts. First, in MysQl 5.7 and later, Xa transactions are written

to the binary log when they are prepared, and they may not commit in the same order as they

are prepared, which meant that even in single-threaded replication, the replica could have

multiple write transactions open at the same time.

second, the issue was mostly resolved by enforcing row-based replication and always using

the READ COMMITTED transaction isolation level. however, very puzzling, occasionally –

seemingly at random – there would still be lock conflicts on the replicas. in the end it turned

out to be gap locks caused by page splits that were the culprit. page splits do not occur at the

same time on the source and replica, so that there could end up being additional locks on the

replica. the issue was eventually solved in the 5.7.22 and 8.0.4 releases by releasing the gap

locks taken by the replication threads when the Xa transactions reach the prepare stage.

If you try the recurring UPDATE statement example in the READ COMMITTED transaction

isolation level, you will see how it takes fewer locks than before. This is shown in

Listing 12-6.

Listing 12-6. Locking in the READ COMMITTED transaction isolation level

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 980 1582 6

-- 2 981 1583 6

-- Connection 1

Connection 1> SET transaction_isolation = 'READ-COMMITTED';

Query OK, 0 rows affected (0.0002 sec)

Chapter 12 transaCtion isolation levels

215

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 1> UPDATE world.city

 SET Population = Population * 1.10

 WHERE CountryCode = 'SVK'

 AND District = 'Bratislava';

Query OK, 1 row affected (0.0007 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SELECT index_name, lock_type,

 lock_mode, lock_data

 FROM performance_schema.data_locks

 WHERE object_schema = 'world'

 AND object_name = 'city'

 AND lock_type = 'RECORD'

 AND thread_id = 1582

 ORDER BY index_name, lock_data DESC;

+-------------+-----------+---------------+-------------+

| index_name | lock_type | lock_mode | lock_data |

+-------------+-----------+---------------+-------------+

| CountryCode | RECORD | X,REC_NOT_GAP | 'SVK', 3209 |

| PRIMARY | RECORD | X,REC_NOT_GAP | 3209 |

+-------------+-----------+---------------+-------------+

2 rows in set (0.0008 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0754 sec)

Whereas the SERIALIZABLE and REPEATABLE READ isolation levels held seven record

and gap locks, READ COMMITTED only holds one on the CountryCode index and one on the

primary key – though for a while, locks were held on the other index and row records that

were examined, but they have at the time of the output been released again. This greatly

reduces the potential for lock waits and deadlocks.

Chapter 12 transaCtion isolation levels

216

A less known feature of the READ COMMITTED isolation level is semi-consistent reads

which allow a statement to use the last committed value of a column to compare against

its WHERE clause. If it is determined the row will not be affected by the statement, no lock

conflict occurs even if another transaction holds a lock. If the row will be updated, the

condition is re-evaluated, and a lock prevents conflicting changes. Listing 12-7 shows an

example of this. There are two investigations available that you can explore if you want to

take a look at the locks held.

Listing 12-7. READ COMMITTED Semi-consistent reads

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 986 1592 6

-- 2 987 1593 6

-- Connection 1

Connection 1> SET transaction_isolation = 'READ-COMMITTED';

Query OK, 0 rows affected (0.0004 sec)

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0004 sec)

Connection 1> UPDATE world.city

 SET Population = Population * 1.10

 WHERE Name = 'San Jose'

 AND District = 'Southern Tagalog';

Query OK, 1 row affected (0.0106 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SET transaction_isolation = 'READ-COMMITTED';

Query OK, 0 rows affected (0.0004 sec)

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0065 sec)

Connection 2> UPDATE world.city

 SET Population = Population * 1.10

 WHERE Name = 'San Jose'

Chapter 12 transaCtion isolation levels

217

 AND District = 'Central Luzon';

Query OK, 1 row affected (0.0060 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Both transactions update cities named San Jose, but in different districts. Neither

the Name nor the District column is indexed. Even though the second transaction does

examine the row with Name = 'San Jose' AND District = 'Southern Tagalog', there

is no lock conflict as the transaction based on the district determines it will not update

the row. However, if an index is added to the Name column, then there will be a lock

conflict, so the feature is currently of limited value for large tables.

You may from this discussion get the impression that READ COMMITTED always

performs better than REPEATABLE READ. This is the most logical conclusion, however as it

often is, things are more complex than as such. The caveat is that in order to start a read

view, the trx_sys mutex (the wait/synch/mutex/innodb/trx_sys_mutex Performance

Schema instrument) is required, and since READ COMMITTED starts a new read view for

each statement, it will end up obtaining the trx_sys mutex much more frequently than

REPEATABLE READ. In the end, if you have a lot of quick transactions and statements,

you can in READ COMMITTED end up with so much activity on the mutex that it becomes

a severe bottleneck and you are better off using REPEATABLE READ. For longer-running

transactions and statements, the balance shifts toward READ COMMITTED.

Tip: if you are interested in seeing some benchmark showing how the trx_
sys mutex impacts the performance, see http://dimitrik.free.fr/
blog/archives/2015/02/mysql-performance-impact-of-innodb-
transaction-isolation-modes-in-mysql-57.html.

 Read Uncommitted
The last transaction isolation level is READ UNCOMMITTED. As the name suggests, a

transaction using this isolation level is allowed to read data that has not yet been

committed; this is also called a dirty read. This may sound very dangerous, and in most

cases, it is an absolute no-go. However, in a few special cases, it can be useful. Other than

the dirty reads, the behavior is the same as for READ COMMITTED. The main advantage of

READ UNCOMMITTED over READ COMMITTED is that InnoDB never needs to keep more than

one version of the data to fulfill the query.

Chapter 12 transaCtion isolation levels

http://dimitrik.free.fr/blog/archives/2015/02/mysql-performance-impact-of-innodb-transaction-isolation-modes-in-mysql-57.html
http://dimitrik.free.fr/blog/archives/2015/02/mysql-performance-impact-of-innodb-transaction-isolation-modes-in-mysql-57.html
http://dimitrik.free.fr/blog/archives/2015/02/mysql-performance-impact-of-innodb-transaction-isolation-modes-in-mysql-57.html

218

The main uses of READ UNCOMMITTED are for cases where only approximate values

are needed, for bulk inserts, and for investigations where you want to take a peek at

what changes have been made by another transaction. An example of only requiring

approximate values is the calculation of index statistics for which InnoDB uses READ

UNCOMMITTED. For bulk inserts, then MySQL Shell’s parallel table data import feature

(util.importTable() in JavaScript or util.import_table() in Python) switches to READ

UNCOMMITTED during the bulk load.

 Summary
This chapter has examined the four transaction isolation levels that InnoDB supports.

The strictest isolation level is SERIALIZABLE which takes locks for all statements except

auto-committing single-statement SELECT transactions. The REPEATABLE READ isolation

level supports non-locking reads but keeps support for consistent reads. One gotcha

is that if a transaction updates a row that was committed after the read view was

established, then the updated row is added to the view.

The next level is READ COMMITTED which abandons consistent reads and always

includes all committed rows. It does open up for phantom rows, but on the other hand,

READ COMMITTED needs fewer locks and holds them for shorter and in that way greatly

reduces the potential for lock conflicts. The final isolation level is READ UNCOMMITTED

which behaves like READ COMMITTED but allows for dirty reads, that is, reading changes

that have not yet been committed.

That concludes the theory part of the book. The remaining chapters go through six

case studies with the first analyzing an issue involving flush locks.

Chapter 12 transaCtion isolation levels

219
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_13

CHAPTER 13

Case Study: Flush Locks
Lock issues are one of the common causes of performance issues, and the impact

can be severe. In the worst cases, queries can fail, and connections pile up so no new

connections can be made. Therefore, it is important to know how to investigate lock

issues and remediate the problems.

This and the following chapters will discuss six categories of lock issues:

• Flush locks

• Metadata and schema locks

• Record-level locks including gap locks

• Deadlocks

• Foreign keys

• Semaphores

Apart from the foreign keys case study, each category of locks uses different

techniques to determine the cause of the lock contention. When you read the examples,

you should have in mind that similar techniques can be used to investigate lock issues

that do not 100% match the example. For the first four case studies (Chapters 13–16), the

discussion has been split into six parts:

• The symptoms: These enable you to identify the kind of lock issue

encountered.

• The cause: The underlying reason you encounter this kind of lock

issues. This is related to the general discussion of the locks earlier in

the book, particularly Chapters 6 and 7.

https://doi.org/10.1007/978-1-4842-6652-6_13#DOI

220

• The setup: This includes the steps to set up the lock issue if you want

to try it yourself. As lock contention requires multiple connections,

the prompt, for example, Connection 1>, is used to tell which

connection should be used for which statements. If you want to

follow the investigation with no more information than you would

have in a real-world case, you can skip this section and go back and

review it after getting through the investigation.

• The investigation: The details of the investigation. This draws on the

discussion about monitoring in Chapter 2–4.

• The solution: How you resolve the immediate lock problem, so you

minimize the outage caused by it.

• The prevention: A discussion of how to reduce the chance of

encountering the issue. This is closely related to the discussion about

reducing locking issues in Chapter 9.

The last two case studies for foreign keys and semaphores follow a similar pattern.

Enough talk, the first lock category that will be discussed is flush locks which is one

of the most difficult lock issues to investigate.

 The Symptoms
The main symptom of a flush lock issue is that the database comes to a grinding halt

where all new queries using some or all tables end up waiting for the flush lock. The

telltale signs to look for include the following:

• The query state of new queries is “Waiting for table flush.” This may

occur for all new queries or only for queries accessing specific tables.

• More and more connections are created.

• Eventually, new connections fail as MySQL is out of connection. The

error received for new connections is ER_CON_COUNT_ERROR: ERROR 1040

(HY000): Too many connections. (When using the X protocol in 8.0.19

or earlier, the error is MySQL Error 5011: Could not open session.)

• There is at least one query that has been running later than the oldest

request for a flush lock.

Chapter 13 Case study: Flush loCks

221

• There may be a FLUSH TABLES statement in the process list, but this is

not always the case.

• When the FLUSH TABLES statement has waited for lock_wait_

timeout, an ER_LOCK_WAIT_TIMEOUT error occurs: ERROR: 1205:

Lock wait timeout exceeded; try restarting transaction.

Since the default value for lock_wait_timeout is 365 days, this is only

likely to occur if the timeout has been reduced.

• If you connect with the mysql command-line client with a default

schema set, the connection may seem to hang before you get to the

prompt. The same can happen if you change the default schema with

a connection open.

Tip the issue that the mysql command-line client is blocking does not
occur if you start the client with the -A option which disables collecting the
autocompletion information. a better solution is to use MysQl shell that fetches
the autocompletion information in a way that does not block due to the flush lock.

If you see these symptoms, it is time to understand what is causing the lock issue.

 The Cause
When a connection requests a table to be flushed, it requires all references to the table to

be closed which means no active queries can be using the table. So, when a flush request

arrives, it must wait for all queries using the tables that are to be flushed to finish. Note

that unless you explicitly specify which tables to flush, it is just the query and not the

entire transaction that must finish. Obviously, the case where all tables are flushed, for

example, due to FLUSH TABLES WITH READ LOCK, is the most severe as it means all active

queries must finish before the flush statement can proceed.

When the wait for the flush lock becomes a problem, it means that there are one

or more queries preventing the FLUSH TABLES statement from obtaining the flush lock.

Since the FLUSH TABLES statement requires an exclusive lock, it in turn stops subsequent

queries from acquiring the shared lock they need.

This issue is often seen in connection with backups where the backup process needs

to flush all tables and get a read lock in order to create a consistent backup.

Chapter 13 Case study: Flush loCks

222

A special case can occur when the FLUSH TABLES statement has timed out or has

been killed, but the subsequent queries are not proceeding. When that happens, it is

because the low-level table definition cache (TDC) version lock is not released. This is

a case that can cause confusion as it is not obvious why the subsequent queries are still

waiting for the table flush. A similar case happens when an ANALYZE TABLE statement

triggers an implicit flush of the table or tables that were analyzed.

 The Setup
The lock situation that will be investigated involves three connections (not including

the connection used for the investigation). The first connection executes a slow query,

the second flushes all tables with a read lock, and the last connection executes a quick

query. The statements are shown in Listing 13-1.

Listing 13-1. Triggering flush lock contention

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 668 1106 6

-- 2 669 1107 6

-- 3 670 1108 6

-- Connection 1

Connection 1> SELECT city.*, SLEEP(3600) FROM world.city WHERE ID = 130;

-- Connection 2

Connection 2> FLUSH TABLES WITH READ LOCK;

-- Connection 3

Connection 3> SELECT * FROM world.city WHERE ID = 3805;

The use of SLEEP(3600) in the first query means you have an hour (3600 seconds) to

execute the two other queries and perform the investigation. If you want to stop the lock

situation, you can kill the query:

-- Investigation #6

-- Connection 4

Chapter 13 Case study: Flush loCks

223

Connection 4> KILL 668;

Query OK, 0 rows affected (0.0004 sec)

You are now ready to start the investigation.

 The Investigation
The investigation of flush locks requires you to look at the list of queries running on the

instance. Unlike other lock contentions, there are no Performance Schema tables or

InnoDB monitor report that can be used to query for the blocking query directly.

Listing 13-2 shows an example of the output using the sys.session view. Similar

results will be produced using the alternative ways to get a list of queries. The thread and

connection ids as well as the statement latencies will vary.

Listing 13-2. Investigating flush lock contention using sys.session

-- Investigation #1

-- Connection 4

Connection 4> SELECT thd_id, conn_id, state,

 current_statement,

 statement_latency

 FROM sys.session

 WHERE command = 'Query'\G

*************************** 1. row ***************************

 thd_id: 1106

 conn_id: 668

 state: User sleep

current_statement: SELECT city.*, SLEEP(3600) FROM world.city WHERE ID = 130

statement_latency: 1.48 min

*************************** 2. row ***************************

 thd_id: 1107

 conn_id: 669

 state: Waiting for table flush

current_statement: FLUSH TABLES WITH READ LOCK

statement_latency: 1.44 min

Chapter 13 Case study: Flush loCks

224

*************************** 3. row ***************************

 thd_id: 1108

 conn_id: 670

 state: Waiting for table flush

current_statement: SELECT * FROM world.city WHERE ID = 3805

statement_latency: 1.41 min

*************************** 4. row ***************************

 thd_id: 1105

 conn_id: 667

 state: NULL

current_statement: SELECT thd_id, conn_id, state, ... on WHERE command

= 'Query'

statement_latency: 40.63 ms

4 rows in set (0.0419 sec)

There are four queries in the output. The sys.session and sys.processlist views

by default sort the queries according to the execution time in descending order. This

makes it easy to investigate issues like contention around the flush lock where the query

time is the primary thing to consider when looking for the cause.

You start out looking for the FLUSH TABLES statement (the case where there is no

FLUSH TABLES statement will be discussed shortly). In this case, that is thd_id = 1107

(the second row). Notice that the state of the FLUSH statement is “Waiting for table flush.”

You then look for queries that have been running for a longer time. In this case, there

is only one query: the one with thd_id = 1106. This is the query that blocks the FLUSH

TABLES WITH READ LOCK from completing. In general, there may be more than one

query.

The two remaining queries are a query being blocked by the FLUSH TABLES WITH

READ LOCK and the query to obtain the output. Together, the three first queries form a

typical example of a long-running query blocking a FLUSH TABLES statement which in

turn blocks other queries.

You can also get the process list from MySQL Workbench and in some cases also

from your monitoring solution (MySQL Enterprise Monitor is an example). In MySQL

Workbench, you can use the Client Connections report by choosing the Administration

tab in the navigator as shown in Figure 13-1.

Chapter 13 Case study: Flush loCks

225

You open the report by selecting Client Connections in the Management section.

The report fetches the process information from the performance_schema.threads

table with a LEFT JOIN on the performance_schema.session_connect_attrs table to get

the program name. You can choose whether to filter out background threads as well as

sleeping connections, and MySQL Workbench allows you to change the ordering without

re-executing the statement that generates the report. Optionally, you can also refresh the

report. An example for this case study is shown in Figure 13-2.

Figure 13-1. Navigating to the Client Connection report

Chapter 13 Case study: Flush loCks

226

You cannot choose which columns to include, and to make the text readable, only

part of the report is included in the screenshot. The Id column corresponds to conn_id

in the sys.session output, and Thread (near the middle) corresponds to thd_id. The

full screenshot is included in this book’s GitHub repository as figure_13_2_workbench_

flush_lock.png.

An advantage of reports like the ones in MySQL Workbench and MySQL Enterprise

Monitor is that they use existing connections to create the report. In cases where the lock

issue causes all connections to be used, then it can be invaluable to be able to get the list

of queries using a monitoring solution.

As mentioned, the FLUSH TABLES statement may not always be present in the list

of queries. The reason there still are queries waiting for flush tables is the low-level

TDC version lock. The principles of the investigation remain the same, but it can seem

confusing. Listing 13-3 shows such an example using the same setup but killing the

connection executing the flush statement before the investigation (Ctrl+C can be used

in MySQL Shell in the connection executing FLUSH TABLES WITH READ LOCK if you are

executing it interactively).

Listing 13-3. Flush lock contention without a FLUSH TABLES statement

-- Investigation #7

Connection 4> KILL 669;

Query OK, 0 rows affected (0.0004 sec)

Figure 13-2. Showing the client connections in MySQL Workbench

Chapter 13 Case study: Flush loCks

227

-- Investigation #1

Connection 4> SELECT thd_id, conn_id, state,

 current_statement,

 statement_latency

 FROM sys.session

 WHERE command = 'Query'\G

*************************** 1. row ***************************

 thd_id: 1106

 conn_id: 668

 state: User sleep

current_statement: SELECT city.*, SLEEP(3600) FROM world.city WHERE ID = 130

statement_latency: 3.88 min

*************************** 2. row ***************************

 thd_id: 1108

 conn_id: 670

 state: Waiting for table flush

current_statement: SELECT * FROM world.city WHERE ID = 3805

statement_latency: 3.81 min

*************************** 3. row ***************************

 thd_id: 1105

 conn_id: 667

 state: NULL

current_statement: SELECT thd_id, conn_id, state, ... on WHERE command

= 'Query'

statement_latency: 39.53 ms

3 rows in set (0.0406 sec)

This situation is identical to the previous except the FLUSH TABLES statement is gone.

In this case, find the query that has been waiting the longest with the state “Waiting for

table flush.” Queries that have been running longer than this query has been waiting are

the ones preventing the TDC version lock from being released. In this case, that means

thd_id = 668 is the blocking query.

Once you have identified the issue and the principal queries involved, you need to

decide what to do about the issue.

Chapter 13 Case study: Flush loCks

228

 The Solution
There are two levels of solving the issue. First of all, you need to resolve the immediate

problem of queries not executing. Second, you need to work at avoiding the issue in the

future. This subsection will discuss the immediate solution, and the next will consider

how to reduce the chance of the issue occurring.

To resolve the immediate issue, you have the option of waiting for the queries to

complete or starting to kill queries. If you can redirect the application to use another

instance while the flush lock contention is ongoing, you may be able to let the situation

resolve itself by letting the long-running queries complete. If there are data changing

queries among those running or waiting, you do in that case need to consider whether

it will leave the system in a consistent state after all queries have completed. One option

may be to continue in read-only mode with the read queries executing on a different

instance.

Tip If the long-running query is a rogue query with missing join clauses, it
can take a very long time to complete. the author of this book has experienced
a query that ran for months. When deciding whether to wait, you want to try to
estimate how long the query will take. a good option is to use the EXPLAIN FOR
CONNECTION <processlist id> command to examine the query plan of the
long-running query.

If you decide to kill queries, you can try to kill the FLUSH TABLES statement. If that

works, it is the simplest solution. However, as discussed, that will not always help, and in

that case, the only solution is to kill the queries that were preventing the FLUSH TABLES

statement from completing. If the long-running queries look like runaway queries and

the application/client that executed them anyway is not waiting for them any longer, you

may want to kill them without trying to kill the FLUSH TABLES statement first.

One important consideration when looking to kill a query is how much data has

been changed. For a pure SELECT query (not involving stored routines), that is always

nothing, and from the perspective of work done, it is safe to kill it. For INSERT, UPDATE,

DELETE, and similar queries, however, the changed data must be rolled back if the query

is killed. It will usually take longer to roll back changes than making them in the first

place, so be prepared to wait a long time for the rollback if there are many changes. You

Chapter 13 Case study: Flush loCks

229

can use the information_schema.INNODB_TRX view to estimate the amount of work done

by looking at the trx_rows_modified column. If there is a lot of work to roll back, it is

usually better to let the query complete.

Caution When a dMl statement is killed, the work it has done must be rolled
back. the rollback will usually take longer than creating the change, sometimes
much longer. you need to factor that in, if you consider killing a long-running dMl
statement.

Of course, optimally you prevent the issue from happening at all.

 The Prevention
The flush lock contention happens because of the combination of a long-running query

and a FLUSH TABLES statement. So, to prevent the issue, you need to look at what you can

do to avoid these two conditions to be present at the same time.

Finding, analyzing, and handling long-running queries are beyond the scope of this

book. However, one option of particular interest is to set a timeout for the query which

is supported for SELECT statements using the max_execution_time system variable and

the MAX_EXECUTION_TIME(N) optimizer hint and is a great way to protect against runaway

queries. Some connectors also have support for timing out queries.

Tip to avoid long-running SELECT queries, you can configure the max_
execution_time option or set the MAX_EXECUTION_TIME(N) optimizer hint.
this will make the SELECT statement time out after the specified period and help
prevent issues like flush lock waits.

Some long-running queries cannot be prevented. It may be a reporting job, building

a cache table, or another task that must access a lot of data. In that case, the best you

can do is to try to avoid them running, while it is also necessary to flush the tables. One

option is to schedule the long-running queries to run at different times than when it is

necessary to flush tables. Another option is to have the long-running queries run on a

different instance than the jobs that require flushing tables.

Chapter 13 Case study: Flush loCks

230

A common task that requires flushing the tables is taking a backup. In MySQL 8, you

can avoid that issue by using the backup and log locks. For example, MySQL Enterprise

Backup (MEB) does this in version 8.0.16 and later, so InnoDB tables are never flushed.

Alternatively, you can perform the backup at a period with low usage, so the potential for

conflicts is lower, or you can even do the backup while the system is in read-only mode

and avoid the FLUSH TABLES WITH READ LOCK altogether.

 Summary
This chapter has studied a situation where a long-running query prevented a FLUSH

TABLES WITH READ LOCK statement from acquiring the flush lock which subsequently

prevented queries started later to execute. A situation like this is among the hardest to

investigate as there is no help to get from the lock tables in the Performance Schema.

Instead you need to look at the process list and look for queries that are older than the

FLUSH TABLES statement or, if that is not present, the connection that has waited for a

flush lock the longest.

In most cases, you have the option of waiting for the long-running query to complete

or to kill it in order to resolve the issue. Whether killing the query is acceptable depends

on the purpose of the query and how many changes have been made by the transaction.

To prevent the issue, you can try to separate tasks so long-running queries and FLUSH

TABLE statements are not executing at the same time or they are executing on different

MySQL instances. For SELECT statements, you can also use the max_execution_time

option or the MAX_EXECUTION_TIME(N) optimizer switch to automatically kill long-

running queries.

Another lock type that often causes confusion is the metadata lock. A case study

involving metadata locks will be discussed in the next chapter.

Chapter 13 Case study: Flush loCks

231
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_14

CHAPTER 14

Case Study: Metadata
and Schema Locks
In MySQL 5.7 and earlier, metadata locks were often a source of confusion. The problem

is that it is not obvious who holds the metadata lock. In MySQL 5.7, instrumentation of the

metadata locks was added to the Performance Schema, and in MySQL 8.0, it is enabled by

default. With the instrumentation enabled, it becomes easy to determine who is blocking

the connection trying to obtain the lock. This chapter goes through an example of a

situation with metadata locks and examines it. First the symptoms are discussed.

 The Symptoms
The symptoms of metadata lock contention are similar to those of flush lock contention.

In a typical situation, there will be a long-running query or transaction, a DDL statement

waiting for the metadata lock, and possibly queries pilling up. The symptoms to look out

for are as follows:

• A DDL statement and possibly other queries are stuck in the state

“Waiting for table metadata lock.”

• Queries may be pilling up. The queries that are waiting all use

the same table. (There may potentially be more than one group

of queries waiting if there are DDL statements for multiple tables

waiting for the metadata lock.)

• When the DDL statement has waited for lock_wait_timeout, an ER_

LOCK_WAIT_TIMEOUT error occurs: ERROR: 1205: Lock wait timeout

exceeded; try restarting transaction. Since the default value

for lock_wait_timeout is 365 days, this is only likely to occur if the

timeout has been reduced.

https://doi.org/10.1007/978-1-4842-6652-6_14#DOI

232

• There is a long-running query or a long-running transaction. In the

latter case, the transaction may be idle or executing a query that does

not use the table that the DDL statement acts on.

What makes the situation potentially confusing is the last point: there may not be

any long-running queries that are the clear candidates for causing the lock issue. So,

what is the cause of the metadata lock contention?

 The Cause
Remember that the metadata locks exist to protect the schema definition (as well

as being used with explicit locks). The schema protection will exist for as long as a

transaction is active, so when a transaction queries a table, the metadata lock will last

until the end of the transaction. Therefore, you may not see any long-running queries. In

fact, the transaction holding the metadata lock may not be doing anything at all.

In short, the metadata lock exists as one or more connections may rely on the

schema for a given table not changing, or they have explicitly locked the table either

using the LOCK TABLES or FLUSH TABLES WITH READ LOCK statement.

 The Setup
The example investigation of metadata locks uses three connections like in the example

in the previous chapter. The first connection is in the middle of a transaction, the second

connection tries to add an index to the table used by the transaction, and the third

connection attempts to execute a query against the same table. The queries are shown in

Listing 14-1.

Listing 14-1. Triggering metadata lock contention

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 713 1181 6

-- 2 714 1182 6

-- 3 715 1183 6

Chapter 14 Case study: Metadata and sCheMa LoCks

233

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0003 sec)

Connection 1> SELECT * FROM world.city WHERE ID = 3805\G

*************************** 1. row ***************************

 ID: 3805

 Name: San Francisco

CountryCode: USA

 District: California

 Population: 776733

1 row in set (0.0007 sec)

Connection 1> SELECT Code, Name FROM world.country WHERE Code = 'USA'\G

*************************** 1. row ***************************

Code: USA

Name: United States

1 row in set (0.0005 sec)

-- Connection 2

Connection 2> ALTER TABLE world.city ADD INDEX (Name);

-- Connection 3

Connection 3> SELECT * FROM world.city WHERE ID = 130;

At this point, you can start the investigation. The situation will not resolve itself

(unless you have a low value for lock_wait_timeout or you are prepared to wait a year),

so you have all the time you want. When you want to resolve the block, you can start

terminating the ALTER TABLE statement in Connection 2 to avoid modifying the world.

city table. Then commit or roll back the transaction in Connection 1.

 The Investigation
If you have the wait/lock/metadata/sql/mdl Performance Schema instrument enabled

(the default in MySQL 8), it is straightforward to investigate metadata lock issues. You

can use the metadata_locks table in the Performance Schema to list the granted and

pending locks. However, a simpler way to get a summary of the lock situation is to use

the schema_table_lock_waits view in the sys schema.

Chapter 14 Case study: Metadata and sCheMa LoCks

234

As an example, consider the metadata lock wait issue that can be seen in Listing 14-2

where three connections are involved. The WHERE clause has been chosen to just include

the rows of interest for this investigation.

Listing 14-2. A metadata lock wait issue

-- Investigation #1

-- Connection 4

Connection 4> SELECT thd_id, conn_id, state,

 current_statement,

 statement_latency

 FROM sys.session

 WHERE command = 'Query' OR trx_state = 'ACTIVE'\G

*************************** 1. row ***************************

 thd_id: 1181

 conn_id: 713

 state: NULL

current_statement: SELECT Code, Name FROM world.country WHERE Code = 'USA'

statement_latency: NULL

*************************** 2. row ***************************

 thd_id: 1182

 conn_id: 714

 state: Waiting for table metadata lock

current_statement: ALTER TABLE world.city ADD INDEX (Name)

statement_latency: 26.68 s

*************************** 3. row ***************************

 thd_id: 1183

 conn_id: 715

 state: Waiting for table metadata lock

current_statement: SELECT * FROM world.city WHERE ID = 130

statement_latency: 24.68 s

*************************** 4. row ***************************

 thd_id: 1180

 conn_id: 712

 state: NULL

Chapter 14 Case study: Metadata and sCheMa LoCks

235

current_statement: SET @sys.statement_truncate_le ... ('statement_truncate_

len', 64)

statement_latency: 50.42 ms

4 rows in set (0.0530 sec)

Two connections are waiting for a metadata lock (on the world.city table). There

is a third connection included (conn_id = 713) which is idle and can be seen from the

NULL for the statement latency (in some versions earlier than 8.0.18 and after 8.0.21, you

may also see that the current statement is NULL). In this case, the list of queries is limited

to those with an active query or an active transaction, but usually you will start out with

a full process list. However, to make it easy to focus on the important parts, the output is

filtered.

Once you know there is a metadata lock issue, you can use the sys.schema_table_

lock_waits view to get information about the lock contention. Listing 14-3 shows an

example of the output corresponding to the just discussed process list.

Listing 14-3. Finding metadata lock contention

-- Investigation #3

Connection 4> SELECT *

 FROM sys.schema_table_lock_waits\G

*************************** 1. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 1182

 waiting_pid: 714

 waiting_account: root@localhost

 waiting_lock_type: EXCLUSIVE

 waiting_lock_duration: TRANSACTION

 waiting_query: ALTER TABLE world.city ADD INDEX (Name)

 waiting_query_secs: 128

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 1181

 blocking_pid: 713

 blocking_account: root@localhost

 blocking_lock_type: SHARED_READ

Chapter 14 Case study: Metadata and sCheMa LoCks

236

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 713

sql_kill_blocking_connection: KILL 713

*************************** 2. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 1183

 waiting_pid: 715

 waiting_account: root@localhost

 waiting_lock_type: SHARED_READ

 waiting_lock_duration: TRANSACTION

 waiting_query: SELECT * FROM world.city WHERE ID = 130

 waiting_query_secs: 126

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 1181

 blocking_pid: 713

 blocking_account: root@localhost

 blocking_lock_type: SHARED_READ

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 713

sql_kill_blocking_connection: KILL 713

*************************** 3. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 1182

 waiting_pid: 714

 waiting_account: root@localhost

 waiting_lock_type: EXCLUSIVE

 waiting_lock_duration: TRANSACTION

 waiting_query: ALTER TABLE world.city ADD INDEX (Name)

 waiting_query_secs: 128

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 1182

Chapter 14 Case study: Metadata and sCheMa LoCks

237

 blocking_pid: 714

 blocking_account: root@localhost

 blocking_lock_type: SHARED_UPGRADABLE

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 714

sql_kill_blocking_connection: KILL 714

*************************** 4. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 1183

 waiting_pid: 715

 waiting_account: root@localhost

 waiting_lock_type: SHARED_READ

 waiting_lock_duration: TRANSACTION

 waiting_query: SELECT * FROM world.city WHERE ID = 130

 waiting_query_secs: 126

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 1182

 blocking_pid: 714

 blocking_account: root@localhost

 blocking_lock_type: SHARED_UPGRADABLE

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 714

sql_kill_blocking_connection: KILL 714

4 rows in set (0.0041 sec)

The output shows that there are four cases of queries waiting and blocking. This

may be surprising, but it happens because there are several locks involved and there

is a chain of waits. Each row is a pair of a waiting and blocking connection. The output

uses “pid” for the process list id which is the same as the connection id used in earlier

outputs. The information includes what the lock is on, details about the waiting

connection, details about the blocking connection, and two queries that can be used to

kill the blocking query or connection.

Chapter 14 Case study: Metadata and sCheMa LoCks

238

The third row shows process list id 714 waiting on itself. That sounds like a deadlock,

but it is not. The reason is that the ALTER TABLE first took a shared lock that can be

upgraded and then tried to get the exclusive lock which is waiting. Because there is

no explicit information on which existing lock is actually blocking the new lock, this

information ends up being included.

The fourth row shows that the SELECT statement is waiting for process list id 714

which is the ALTER TABLE. This is the reason that connections can start to pile up as the

DDL statement requires an exclusive lock, so it will block requests for shared locks.

The first and second rows are where the underlying issue for the lock contention

is revealed. Process list id 713 is blocking for both of the other connections which

shows that this is the main culprit that is blocking the DDL statement. So, when you are

investigating an issue like this, look for a connection waiting for an exclusive metadata

lock that is blocked by another connection. If there is a large number of rows in the

output, you can also look for the connection causing the most blocks and use that as a

starting point. Listing 14-4 shows an example of how you can do this.

Listing 14-4. Looking for the connection causing the metadata lock block

-- Investigation #4

Connection 4> SELECT *

 FROM sys.schema_table_lock_waits

 WHERE waiting_lock_type = 'EXCLUSIVE'

 AND waiting_pid <> blocking_pid\G

*************************** 1. row ***************************

 object_schema: world

 object_name: city

 waiting_thread_id: 1182

 waiting_pid: 714

 waiting_account: root@localhost

 waiting_lock_type: EXCLUSIVE

 waiting_lock_duration: TRANSACTION

 waiting_query: ALTER TABLE world.city ADD INDEX (Name)

 waiting_query_secs: 678

 waiting_query_rows_affected: 0

 waiting_query_rows_examined: 0

 blocking_thread_id: 1181

 blocking_pid: 713

Chapter 14 Case study: Metadata and sCheMa LoCks

239

 blocking_account: root@localhost

 blocking_lock_type: SHARED_READ

 blocking_lock_duration: TRANSACTION

 sql_kill_blocking_query: KILL QUERY 713

sql_kill_blocking_connection: KILL 713

1 row in set (0.0025 sec)

-- Investigation #5

Connection 4> SELECT blocking_pid, COUNT(*)

 FROM sys.schema_table_lock_waits

 WHERE waiting_pid <> blocking_pid

 GROUP BY blocking_pid

 ORDER BY COUNT(*) DESC;

+--------------+----------+

| blocking_pid | COUNT(*) |

+--------------+----------+

| 713 | 2 |

| 714 | 1 |

+--------------+----------+

2 rows in set (0.0023 sec)

The first query looks for a wait for an exclusive metadata lock where the blocking

process list id is not itself. In this case, that immediately gives the main block contention.

The second query determines the number of blocking queries triggered by each process

list id. It may not be as simple as shown in this example, but using queries as shown here

will help narrow down where the lock contention is.

Once you have determined where the lock contention originates, you need to

determine what the transaction is doing. In this case, the root of the lock contention is

the connection with process list id 713. Going back to the process list output, you can see

that it is not doing anything in this case:

*************************** 1. row ***************************

 thd_id: 1181

 conn_id: 713

 state: NULL

current_statement: SELECT Code, Name FROM world.country WHERE Code = 'USA'

statement_latency: NULL

Chapter 14 Case study: Metadata and sCheMa LoCks

240

What did this connection do to take the metadata lock? The fact that there is no

current statement that involves the world.city table suggests the connection has an

active transaction open. In this case, the transaction is idle (as seen by statement_

latency = NULL), but it could also be that there was a query executing that is unrelated

to the metadata lock on the world.city table. In either case, you need to determine

what the transaction was doing prior to the current state. You can use the Performance

Schema and Information Schema for this. Listing 14-5 shows an example of investigating

the status and recent history of a transaction.

Listing 14-5. Investigating a transaction

-- Investigation #6

Connection 4> SELECT *

 FROM information_schema.INNODB_TRX

 WHERE trx_mysql_thread_id = 713\G

*************************** 1. row ***************************

 trx_id: 284186648310752

 trx_state: RUNNING

 trx_started: 2020-08-06 19:57:33

 trx_requested_lock_id: NULL

 trx_wait_started: NULL

 trx_weight: 0

 trx_mysql_thread_id: 713

 trx_query: NULL

 trx_operation_state: NULL

 trx_tables_in_use: 0

 trx_tables_locked: 0

 trx_lock_structs: 0

 trx_lock_memory_bytes: 1136

 trx_rows_locked: 0

 trx_rows_modified: 0

 trx_concurrency_tickets: 0

 trx_isolation_level: REPEATABLE READ

 trx_unique_checks: 1

 trx_foreign_key_checks: 1

Chapter 14 Case study: Metadata and sCheMa LoCks

241

trx_last_foreign_key_error: NULL

 trx_adaptive_hash_latched: 0

 trx_adaptive_hash_timeout: 0

 trx_is_read_only: 0

trx_autocommit_non_locking: 0

 trx_schedule_weight: NULL

1 row in set (0.0010 sec)

-- Investigation #7

Connection 4> SELECT *

 FROM performance_schema.events_transactions_current

 WHERE thread_id = 1181\G

*************************** 1. row ***************************

 THREAD_ID: 1181

 EVENT_ID: 8

 END_EVENT_ID: NULL

 EVENT_NAME: transaction

 STATE: ACTIVE

 TRX_ID: NULL

 GTID: AUTOMATIC

 XID_FORMAT_ID: NULL

 XID_GTRID: NULL

 XID_BQUAL: NULL

 XA_STATE: NULL

 SOURCE: transaction.cc:209

 TIMER_START: 456761974401600000

 TIMER_END: 457816781775400000

 TIMER_WAIT: 1054807373800000

 ACCESS_MODE: READ WRITE

 ISOLATION_LEVEL: REPEATABLE READ

 AUTOCOMMIT: NO

 NUMBER_OF_SAVEPOINTS: 0

NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0

 NUMBER_OF_RELEASE_SAVEPOINT: 0

 OBJECT_INSTANCE_BEGIN: NULL

 NESTING_EVENT_ID: 7

Chapter 14 Case study: Metadata and sCheMa LoCks

242

 NESTING_EVENT_TYPE: STATEMENT

1 row in set (0.0010 sec)

-- Investigation #8

Connection 4> SELECT event_id, current_schema, sql_text

 FROM performance_schema.events_statements_history

 WHERE thread_id = 1181

 AND nesting_event_id = 8

 AND nesting_event_type = 'TRANSACTION'\G

*************************** 1. row ***************************

 event_id: 9

current_schema: NULL

 sql_text: SELECT * FROM world.city WHERE ID = 3805

*************************** 2. row ***************************

 event_id: 10

current_schema: NULL

 sql_text: SELECT Code, Name FROM world.country WHERE Code = 'USA'

2 rows in set (0.0010 sec)

-- Investigation #9

Connection 4> SELECT attr_name, attr_value

 FROM performance_schema.session_connect_attrs

 WHERE processlist_id = 713

 ORDER BY attr_name;

+-----------------+-----------------+

| attr_name | attr_value |

+-----------------+-----------------+

| _client_license | GPL |

| _client_name | libmysqlxclient |

| _client_version | 8.0.21 |

| _os | Win64 |

| _pid | 27832 |

| _platform | x86_64 |

| _thread | 31396 |

| program_name | mysqlsh |

+-----------------+-----------------+

8 rows in set (0.0007 sec)

Chapter 14 Case study: Metadata and sCheMa LoCks

243

The first query uses the INNODB_TRX view in the Information Schema. It, for example,

shows when the transaction was started, so you can determine how long it has been

active. The trx_rows_modified column is also useful to know how much data has been

changed by the transaction in case it is decided to roll back the transaction. Note that

what InnoDB calls the MySQL thread id (the trx_mysql_thread_id column) is actually

the connection id.

The second query uses the events_transactions_current table from the

Performance Schema to get more transaction information. You can use the timer_wait

column to determine the age of the transaction. The value is in picoseconds, so it can be

easier to understand what the value is by using the FORMAT_PICO_TIME() function:

mysql> SELECT FORMAT_PICO_TIME(1054807373800000) AS Age;

+-----------+

| Age |

+-----------+

| 17.58 min |

+-----------+

1 row in set (0.0006 sec)

If you are using MySQL 8.0.15 or earlier, use the sys.format_time() function

instead.

The third query uses the events_statements_history table to find the previous

queries executed in the transaction. The nesting_event_id column is set to the value

of the event_id from the output of the events_transactions_current table, and the

nesting_event_type column is set to match a transaction. This ensures that only events

that are children of the ongoing transaction are returned. The result is ordered by the

event_id (of the statement) to get the statements in the order they were executed. By

default, the events_statements_history table will include at most the ten latest queries

for the connection.

In this example, the investigation shows that the transaction has executed two

queries: one selecting from the world.city table and one selecting from the world.

country table. It is the first of these queries causing the metadata lock contention.

The fourth query uses the session_connect_attrs table to find the attributes

submitted by the connection. Not all clients and connectors submit attributes, or they

may be disabled, so this information is not always available. When the attributes are

 available, they can be useful to find out where the offending transaction is executed

from. In this example, you can see the connection is from MySQL Shell (mysqlsh).

Chapter 14 Case study: Metadata and sCheMa LoCks

244

When you are done investigating the issue, you can roll back the transaction for

process list id 713. This will cause the ALTER TABLE to execute, so you should also drop

the Name index again if you want to leave the schema as it was before this example:

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0006 sec)

-- Connection 2

Query OK, 0 rows affected (35 min 34.2938 sec)

Records: 0 Duplicates: 0 Warnings: 0

-- Connection 3

+-----+--------+-------------+-----------------+------------+

| ID | Name | CountryCode | District | Population |

+-----+--------+-------------+-----------------+------------+

| 130 | Sydney | AUS | New South Wales | 3276207 |

+-----+--------+-------------+-----------------+------------+

1 row in set (35 min 31.1277 sec)

-- Connection 2

Connection 2> ALTER TABLE world.city DROP INDEX Name;

Query OK, 0 rows affected (0.1890 sec)

Records: 0 Duplicates: 0 Warnings: 0

 The Solution
For a metadata lock contention, you essentially have two options to resolve the issue:

make the blocking transaction complete or kill the DDL statement. To complete

the blocking transaction, you will need to either commit it or roll it back. If you kill

the connection, it triggers a rollback of the transaction, so you need to take into

consideration how much work will need to be rolled back. In order to commit the

transaction, you must find where the connection is executed and commit it that way. You

cannot commit a transaction owned by a different connection.

Chapter 14 Case study: Metadata and sCheMa LoCks

245

Killing the DDL statement will allow the other queries to proceed, but it does not

solve the issue in the long term if the lock is held by an abandoned but still active

transaction. For cases where there is an abandoned transaction holding the metadata

lock, it can however be an option to kill both the DDL statement and the connection

with the abandoned transaction. That way, you avoid the DDL statement to continue

blocking subsequent queries while the transaction rolls back. Then when the rollback

has completed, you can retry the DDL statement.

 The Prevention
The key to avoiding metadata lock contention is to avoid long-running transactions

at the same time as you need to execute DDL statements for the tables used by the

transaction. You can, for example, execute DDL statements at times when you know

there are no long-running transactions. You can also set the lock_wait_timeout option

to a low value which makes the DDL statement abandon after lock_wait_timeout

seconds. While that does not avoid the lock problem, it mitigates the issue by avoiding

the DDL statement stopping other queries from executing. You can then find the root

cause without the stress of having a large part of the application not working.

You can also aim at reducing how long transactions are active. One option is to split a

large transaction into several smaller transactions, if it is not required that all operations

are performed as an atomic unit. You should also make sure that the transaction is not

kept open for unnecessarily long time by making sure you are not doing interactive work,

file I/O, transferring data to the end user, and so on while the transaction is active.

One common cause of long-running transactions is that the application or client

does not commit or roll back the transaction at all. This is particularly likely to happen

with the autocommit option disabled. When autocommit is disabled, any query – even

a plain read-only SELECT statement – will start a new transaction when there is not

already an active transaction. This means that an innocent-looking query may start

a transaction, and if the developer is not aware that autocommit is disabled, then the

developer may not think about explicitly ending the transaction. The autocommit setting

is enabled by default in MySQL Server, but some connectors disable it by default.

Chapter 14 Case study: Metadata and sCheMa LoCks

246

 Summary
In this chapter you investigated a situation where an abandoned transaction caused an

ALTER TABLE statement to block and subsequently prevent other queries on the same

table to execute. The key to determining the cause of the contention is the sys.schema_

table_lock_waits view which is based on the performance_schema.metadata_locks

table. As the number of pairs of waiting and blocking lock requests quickly can add

up, you may want to filter the rows looking, for example, for a waiting request for an

exclusive lock, or you can aggregate the information to find the connection blocking the

most requests.

The solution is to commit or roll back the transaction or kill the DDL statement

waiting for the exclusive metadata lock. Optionally you can also kill both the transaction

and the DDL statement which can be useful if the transaction has to roll back many

changes. A good way to prevent pileups of queries is to use a low value for lock_wait_

timeout and retry the DDL statement if you experience lock wait timeouts.

In the next chapter, you will analyze a situation with InnoDB record lock requests

timing out.

Chapter 14 Case study: Metadata and sCheMa LoCks

247
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_15

CHAPTER 15

Case Study: Record-Level
Locks
Record lock contention is the most frequently encountered, but usually also the least

intrusive as the default lock wait timeout is just 50 seconds, so there is not the same

potential for queries pilling up. That said, there are cases – as will be shown – where

record locks can cause MySQL to come to a grinding halt. This chapter will look into

investigating InnoDB record lock issues in general and in more detail lock wait timeout

issues. Investigating the specifics of deadlocks is deferred until the next chapter.

 The Symptoms
The symptoms of InnoDB record lock contention are often very subtle and not easily

recognizable. In severe cases, you will get a lock wait timeout or a deadlock error, but in

many cases, there may be no direct symptoms. Rather the symptom is that queries are

slower than normal. This may range from being a fraction of a second slower to being

many seconds slower.

For cases where there is a lock wait timeout, you will see an ER_LOCK_WAIT_TIMEOUT

error like the one in the following example:

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

When the queries are slower than they would be without lock contention, the most

likely way to detect the issue is through monitoring, either using something similar to

the Query Analyzer in MySQL Enterprise Monitor or detecting lock contention using the

https://doi.org/10.1007/978-1-4842-6652-6_15#DOI

248

sys.innodb_lock_waits view. Figure 15-1 shows an example of a query in the Query

Analyzer. The sys schema view will be used when discussing the investigation of record

lock contention. The figure is also available in full size in this book’s GitHub repository as

figure_15_1_quan.png.

In the figure, notice how the latency graph for the query increases toward the end

of the period and then suddenly drops again. There is also a red icon to the right of the

normalized query – that icon means the query has returned errors. In this case the error

is a lock wait timeout, but that cannot be seen from the figure. The donut-shaped chart

to the left of the normalized query also shows a red area indicating the Query Response

Time index1 for the query at times is considered poor. The large graph at the top

shows a small dip showing there were enough issues in the instance to cause a general

degradation of the performance of the instance.

1 https://dev.mysql.com/doc/mysql-monitor/en/mem-features-qrti.html

Figure 15-1. Example of a lock contention detected in the Query Analyzer

Chapter 15 Case study: reCord-LeveL LoCks

https://dev.mysql.com/doc/mysql-monitor/en/mem-features-qrti.html

249

There are also several instance-level metrics that show how much locking is occurring

for the instance. These can be very useful to monitor the general lock contention over

time. Listing 15-1 shows the available metrics using the sys.metrics view.

Listing 15-1. InnoDB lock metrics

mysql> SELECT Variable_name,

 Variable_value AS Value,

 Enabled

 FROM sys.metrics

 WHERE Variable_name LIKE 'innodb_row_lock%'

 OR Type = 'InnoDB Metrics - lock';

+-------------------------------+--------+---------+

| Variable_name | Value | Enabled |

+-------------------------------+--------+---------+

| innodb_row_lock_current_waits | 0 | YES |

| innodb_row_lock_time | 480628 | YES |

| innodb_row_lock_time_avg | 1219 | YES |

| innodb_row_lock_time_max | 51066 | YES |

| innodb_row_lock_waits | 394 | YES |

| lock_deadlock_false_positives | 0 | YES |

| lock_deadlock_rounds | 193790 | YES |

| lock_deadlocks | 0 | YES |

| lock_rec_grant_attempts | 218 | YES |

| lock_rec_lock_created | 0 | NO |

| lock_rec_lock_removed | 0 | NO |

| lock_rec_lock_requests | 0 | NO |

| lock_rec_lock_waits | 0 | NO |

| lock_rec_locks | 0 | NO |

| lock_rec_release_attempts | 7522 | YES |

| lock_row_lock_current_waits | 0 | YES |

| lock_schedule_refreshes | 193790 | YES |

| lock_table_lock_created | 0 | NO |

Chapter 15 Case study: reCord-LeveL LoCks

250

| lock_table_lock_removed | 0 | NO |

| lock_table_lock_waits | 0 | NO |

| lock_table_locks | 0 | NO |

| lock_threads_waiting | 0 | YES |

| lock_timeouts | 193 | YES |

+-------------------------------+--------+---------+

23 rows in set (0.0089 sec)

For this discussion, the innodb_row_lock_% and lock_timeouts metrics are the most

interesting. The three time variables are in milliseconds. It can be seen there have been

193 lock wait timeouts which on its own is not necessarily a cause for concern (at least

you need to consider over how long those timeouts occurred). You can also see there

have been 394 cases when a lock could not be granted immediately (innodb_row_lock_

waits) and there have been waits up to more than 51 seconds (innodb_row_lock_time_

max). When the general level of lock contention increases, you will see these metrics

increase as well.

Even better than monitoring the metrics manually, ensure your monitoring solution

record the metrics and can plot them over time in timeseries graphs. Figure 15-2 shows

an example of the metrics plotted for the same incident that was found in Figure 15-1.

Chapter 15 Case study: reCord-LeveL LoCks

251

Figure 15-2. Timeseries graphs for InnoDB row lock metrics

Chapter 15 Case study: reCord-LeveL LoCks

252

The graphs show a general increase in locking. The number of lock waits has two

periods with increased lock waits and then drops off again. The row lock time graph

shows a similar pattern. This is a typical sign of intermittent lock issues.

 The Cause
InnoDB works with shared and exclusive locks on the row data, index records, gaps, and

insert intention locks. When there are two transactions that attempt to access the data in

conflicting ways, one query will have to wait until the required lock becomes available.

In short, two requests for a shared lock can be granted at the same time, but once there is

an exclusive lock, no connections can acquire a lock on the same record.

As it is exclusive locks that are the most likely to cause lock contention, it is usually

DML queries that change data that are the cause of InnoDB record lock contention.

Another source is SELECT statements doing preemptive locking by adding the FOR SHARE

(or LOCK IN SHARE MODE) or FOR UPDATE clause.

 The Setup
This example requires just two connections to set up the scenario that is being

investigated with the first connection having an ongoing transaction and the second

trying to update a row that the first connection holds a lock for. Since the default timeout

waiting for InnoDB locks is 50 seconds, you can optionally choose to increase this

timeout for the second connection that will block to give you more time to perform the

investigation. The setup is shown in Listing 15-2.

Listing 15-2. Triggering InnoDB record lock contention

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 738 1219 6

-- 2 739 1220 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Chapter 15 Case study: reCord-LeveL LoCks

253

Connection 1> UPDATE world.city

 SET Population = 5000000

 WHERE ID = 130;

Query OK, 1 row affected (0.0248 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 2

Connection 2> SET SESSION innodb_lock_wait_timeout = 3600;

Query OK, 0 rows affected (0.0004 sec)

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0002 sec)

Connection 2> UPDATE world.city SET Population = Population * 1.10 WHERE

CountryCode = 'AUS';

In this example, the lock wait timeout for Connection 2 is set to 3600 seconds to

give you an hour to investigate the issue. The START TRANSACTION for Connection 2 is

not required but allows you to roll both transactions back when you are done to avoid

making changes to the data.

 The Investigation
The investigation of record locks is very similar to investigating metadata locks. You

can query the data_locks and data_lock_waits tables in the Performance Schema

which will show the raw lock data and pending locks, respectively. There is also the sys.

innodb_lock_waits view which queries the two tables to find pairs of locks with one

being blocked by the other.

Note the data_locks and data_lock_waits tables are new in MysQL 8. In
MysQL 5.7 and earlier, there were two similar tables in the Information schema
named INNODB_LOCKS and INNODB_LOCK_WAITS. an advantage of using
the innodb_lock_waits view is that it works the same (but with some extra
information in MysQL 8) across the MysQL versions.

Chapter 15 Case study: reCord-LeveL LoCks

254

In most cases, it is easiest to start the investigation using the innodb_lock_waits

view and only dive into the Performance Schema tables as needed. Listing 15-3 shows an

example of the output from innodb_lock_waits for a lock wait situation.

Listing 15-3. Retrieving lock information from the innodb_lock_waits view

-- Investigation #1

-- Connection 3

Connection 3> SELECT * FROM sys.innodb_lock_waits\G

*************************** 1. row ***************************

 wait_started: 2020-08-07 18:04:56

 wait_age: 00:00:16

 wait_age_secs: 16

 locked_table: `world`.`city`

 locked_table_schema: world

 locked_table_name: city

 locked_table_partition: NULL

 locked_table_subpartition: NULL

 locked_index: PRIMARY

 locked_type: RECORD

 waiting_trx_id: 537516

 waiting_trx_started: 2020-08-07 18:04:56

 waiting_trx_age: 00:00:16

 waiting_trx_rows_locked: 2

 waiting_trx_rows_modified: 0

 waiting_pid: 739

 waiting_query: UPDATE world.city SET Populati ... 1.10 WHERE

CountryCode = 'AUS'

 waiting_lock_id: 2711671601760:1923:7:44:2711634704240

 waiting_lock_mode: X,REC_NOT_GAP

 blocking_trx_id: 537515

 blocking_pid: 738

 blocking_query: NULL

 blocking_lock_id: 2711671600928:1923:7:44:2711634698920

 blocking_lock_mode: X,REC_NOT_GAP

Chapter 15 Case study: reCord-LeveL LoCks

255

 blocking_trx_started: 2020-08-07 18:04:56

 blocking_trx_age: 00:00:16

 blocking_trx_rows_locked: 1

 blocking_trx_rows_modified: 1

 sql_kill_blocking_query: KILL QUERY 738

sql_kill_blocking_connection: KILL 738

1 row in set (0.0805 sec)

The columns in the output can be divided into five sections based on the prefix of the

column name. The groups are

• wait_: These columns show some general information around the

age of the lock wait.

• locked_: These columns show what is locked ranging from the

schema to the index as well as the lock type.

• waiting_: These columns show details of the transaction that is

waiting for the lock to be granted including the query and the lock

mode requested.

• blocking_: These columns show details of the transaction that is

blocking the lock request. Note that in the example, the blocking

query is NULL. This means the transaction is idle at the time the

output was generated. Even when there is a blocking query listed,

the query may not have anything to do with the lock that there

is contention for – other than the query is executed by the same

transaction that holds the lock.

• sql_kill_: These two columns provide the KILL queries that can be

used to kill the blocking query or connection.

Note the column blocking_query is the query currently executed (if any)
for the blocking transaction. It does not mean that the query itself is necessarily
causing the lock request to block.

Chapter 15 Case study: reCord-LeveL LoCks

256

The case where the blocking_query column is NULL is a common situation. It means

that the blocking transaction is currently not executing a query. This may be because it

is between two queries. If this period is an extended period, it suggests the application

is doing work that ideally should be done outside the transaction. More commonly,

the transaction is not executing a query because it has been forgotten about, either

in an interactive session where the human has forgotten to end the transaction or an

application flow that does not ensure transactions are committed or rolled back.

 The Solution
The solution depends on the extent of the lock waits. If it is a few queries having short

lock waits, it may very well be acceptable to just let the affected queries wait for the

lock to become available. Remember locks are there to ensure the integrity of the data,

so locks are not inherently a problem. Locks are only a problem when they cause a

significant impact on the performance or cause queries to fail to an extent where it is not

feasible to retry them.

If the lock situation lasts for an extended period – particularly if the blocking

transaction has been abandoned – you can consider killing the blocking transaction. As

always you need to consider that the rollback may take a significant amount of time if the

blocking transaction has performed a large amount of work.

For queries that fail because of a lock wait timeout error, the application should retry

them. Remember that by default a lock wait timeout only rolls back the query that was

executing when the timeout occurred. The rest of the transaction is left as it were before

the query. A failure to handle the timeout may thus leave an unfinished transaction with

its own locks that can cause further lock issues. Whether just the query or the whole

transaction will be rolled back is controlled by the innodb_rollback_on_timeout option.

Caution It is very important that a lock wait timeout is handled as otherwise it
may leave the transaction with locks that are not released. If that happens, other
transactions may not be able to acquire the locks they require.

Chapter 15 Case study: reCord-LeveL LoCks

257

 The Prevention
Preventing significant record-level lock contention largely follows the guidelines that

were discussed in Chapter 9, “Reduce Locking Issues.” To recapitulate the discussion,

the way to reduce lock wait contention is largely about reducing the size and duration

of transactions, using indexes to reduce the number of records accessed, and possibly

switching the transaction isolation level to READ COMMITTED to release locks earlier and

reduce the number of gap locks.

 Summary
In this chapter a case study with InnoDB record locks has been discussed. The

symptoms were that a query that was expected to be quick took a long time to complete.

The key to determine which connections are involved in the lock contention is to use

the sys.innodb_lock_waits view which directly shows information for the waiting and

blocking connections. For more details you can dive into the data_locks and data_

lock_waits tables in the Performance Schema.

The solution depends on the extent of the lock waits. If they are short and infrequent,

you may be able to ignore them and just let the waiting queries wait for the lock request

to become available. If the lock waits are caused by excessively long-running queries or

forgotten transactions, you may need to kill the offending query or connection but taking

the effort to roll back the changes into account. To prevent the issues in the future, work

to reduce the size and duration of your transactions, review the indexes, and consider

the READ COMMITTED transaction isolation level.

In the next case study, a related issue where two transactions have a circular lock

wait graph – better known as a deadlock – will be examined.

Chapter 15 Case study: reCord-LeveL LoCks

259
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_16

CHAPTER 16

Case Study: Deadlocks
One of the lock issues causing the most concerns for database administrators is

deadlocks. This is partly because of the name and partly because they unlike the other

lock issues discussed always cause an error. However, there is as such nothing especially

worrying about deadlocks compared to other locking issues. On the contrary, that they

cause an error means that you know about them sooner and the lock issue resolves itself.

This chapter sets up a deadlock scenario and completes an investigation to work

backward from the deadlock information in the InnoDB monitor output to determine

the transactions involved in the deadlock.

 The Symptoms
The symptoms are straightforward. The victim of a deadlock receives an error and

the lock_deadlocks InnoDB metric increments. The error that will be returned to the

transaction that InnoDB chooses as the victim is ER_LOCK_DEADLOCK:

ERROR: 1213: Deadlock found when trying to get lock; try restarting

transaction

The lock_deadlocks metric is very useful to keep an eye on how often deadlocks occur.

A convenient way to track the value of lock_deadlocks is to use the sys.metrics view:

mysql> SELECT *

 FROM sys.metrics

 WHERE Variable_name = 'lock_deadlocks'\G

*************************** 1. row ***************************

 Variable_name: lock_deadlocks

Variable_value: 2

 Type: InnoDB Metrics - lock

 Enabled: YES

1 row in set (0.0096 sec)

https://doi.org/10.1007/978-1-4842-6652-6_16#DOI

260

Alternatively, you can use the events_errors_summary_global_by_error table in

the Performance Schema and query for the ER_LOCK_DEADLOCK error:

mysql> SELECT *

 FROM performance_schema.events_errors_summary_global_by_error

 WHERE error_name = 'ER_LOCK_DEADLOCK'\G

*************************** 1. row ***************************

 ERROR_NUMBER: 1213

 ERROR_NAME: ER_LOCK_DEADLOCK

 SQL_STATE: 40001

 SUM_ERROR_RAISED: 5

SUM_ERROR_HANDLED: 0

 FIRST_SEEN: 2020-08-01 13:09:29

 LAST_SEEN: 2020-08-07 18:28:20

1 row in set (0.0083 sec)

Do however be aware that this includes all cases of a deadlock returning error 1213

irrespective of the lock type, whereas the lock_deadlocks metric only includes InnoDB

deadlocks.

You can also check the LATEST DETECTED DEADLOCK section in the output of the

InnoDB monitor, for example, by executing SHOW ENGINE INNODB STATUS. This will show

when the last deadlock last occurred, and thus you can use that to judge how frequently

deadlocks occur. If you have the innodb_print_all_deadlocks option enabled, the error

lock will have many outputs of deadlock information. The details of the InnoDB monitor

output for deadlocks will be covered in the section “The Investigation” after the cause of

deadlocks and the setup have been discussed.

 The Cause
Deadlocks are caused by locks being obtained in different orders for two or more

transactions. Each transaction ends up holding a lock that the other transaction

needs. This lock may be a record lock, gap lock, predicate lock, or insert intention lock.

Figure 16-1 shows an example of a circular dependency that triggers a deadlock.

Chapter 16 Case study: deadloCks

261

The deadlock shown in the figure is due to two record locks on the primary keys of a

table. That is one of the simplest deadlocks that can occur. As shown when investigating

a deadlock, the circle can be more complex than this.

 The Setup
This example uses two connections as the example in the previous chapter, but this time

both make changes before Connection 1 ends up blocking until Connection 2 rolls back

its changes with an error. Connection 1 updates the population of Australia and its cities

with 10%, whereas Connection 2 updates the Australian population with that of the city

of Darwin and adds the city. The statements are shown in Listing 16-1.

Figure 16-1. A circular lock dependency triggering a deadlock

Chapter 16 Case study: deadloCks

262

Listing 16-1. Triggering an InnoDB deadlock

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 762 1258 6

-- 2 763 1259 6

-- Connection 1

Connection 1> START TRANSACTION;

Query OK, 0 rows affected (0.0005 sec)

Connection 1> UPDATE world.city SET Population = Population * 1.10 WHERE

CountryCode = 'AUS';

Query OK, 14 rows affected (0.0016 sec)

Rows matched: 14 Changed: 14 Warnings: 0

-- Connection 2

Connection 2> START TRANSACTION;

Query OK, 0 rows affected (0.0005 sec)

Connection 2> UPDATE world.country SET Population = Population + 146000

WHERE Code = 'AUS';

Query OK, 1 row affected (0.2683 sec)

Rows matched: 1 Changed: 1 Warnings: 0

-- Connection 1

Connection 1> UPDATE world.country SET Population = Population * 1.10 WHERE

Code = 'AUS';

-- Connection 2

Connection 2> INSERT INTO world.city VALUES (4080, 'Darwin', 'AUS',

'Northern Territory', 146000);

ERROR: 1213: Deadlock found when trying to get lock; try restarting

transaction

-- Connection 1

Query OK, 1 row affected (0.1021 sec)

Rows matched: 1 Changed: 1 Warnings: 0

Chapter 16 Case study: deadloCks

263

-- Connection 2

Connection 2> ROLLBACK;

Query OK, 0 rows affected (0.0003 sec)

-- Connection 1

Connection 1> ROLLBACK;

Query OK, 0 rows affected (0.0545 sec)

The key is that the two transactions update both the city and country tables but

in opposite order. The setup completes by explicitly rolling back both transactions to

ensure the tables are left without changes.

 The Investigation
The main tool to analyze deadlocks is the section with information about the latest

detected deadlock in the InnoDB monitor output. If you have the innodb_print_all_

deadlocks option enabled (OFF by default), you may also have the deadlock information

from the error log; however, the information is the same, so it does not change the

analysis.

The deadlock information contains four parts describing the deadlock and the result.

The parts are

• When the deadlock occurred.

• Information for the first of the transactions involved in the deadlock.

• Information for the second of the transactions involved in the

deadlock.

• Which of the transactions that was rolled back. This information is

not included in the error log when innodb_print_all_deadlocks is

enabled.

The numbering of the two transactions is arbitrary, and the main purpose is to be

able to refer to one transaction or the other. The two parts with transaction information

are the most important ones. They include how long the transaction was active, some

statistics about the size of the transactions in terms of locks taken and undo log entries

and similar, the query that was blocking waiting for a lock, and information about the

locks involved in the deadlock.

Chapter 16 Case study: deadloCks

264

The lock information is not as easy to interpret as when you use the data_locks and

data_lock_waits tables and the sys.innodb_lock_waits view. However, it is not too

difficult once you have tried to perform the analysis a few times.

Tip Create some deadlocks on purpose in a test system, and study the resulting
deadlock information. then work your way through the information to determine
why the deadlock occurred. since you know the queries, it is easier to interpret the
lock data.

For this deadlock investigation, consider the deadlock section from the InnoDB

monitor that is shown in Listing 16-2. The listing is rather long and the lines wide, so

the information is also available in this book’s GitHub repository as listing_16_2_

deadlock.txt, so you can open the output in a text editor of your choice.

Listing 16-2. Example of the information for a detected deadlock

-- Investigation #1

-- Connection 3

Connection 3> SHOW ENGINE INNODB STATUS\G

*************************** 1. row ***************************

...

LATEST DETECTED DEADLOCK

2020-08-07 20:08:55 0x9f0

*** (1) TRANSACTION:

TRANSACTION 537544, ACTIVE 0 sec starting index read

mysql tables in use 1, locked 1

LOCK WAIT 6 lock struct(s), heap size 1136, 30 row lock(s), undo log

entries 14

MySQL thread id 762, OS thread handle 10344, query id 3282590 localhost ::1

root updating

UPDATE world.country SET Population = Population * 1.10 WHERE Code = 'AUS'

Chapter 16 Case study: deadloCks

265

*** (1) HOLDS THE LOCK(S):

RECORD LOCKS space id 1923 page no 14 n bits 1272 index CountryCode of

table `world`.`city` trx id 537544 lock_mode X locks gap before rec

Record lock, heap no 603 PHYSICAL RECORD: n_fields 2; compact format; info

bits 0

 0: len 3; hex 415554; asc AUT;;

 1: len 4; hex 800005f3; asc ;;

*** (1) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 1924 page no 5 n bits 120 index PRIMARY of table

`world`.`country` trx id 537544 lock_mode X locks rec but not gap waiting

Record lock, heap no 16 PHYSICAL RECORD: n_fields 17; compact format; info

bits 0

 0: len 3; hex 415553; asc AUS;;

 1: len 6; hex 0000000833c9; asc 3 ;;

 2: len 7; hex 02000001750a3c; asc u <;;

 3: len 30; hex 4175737472616c6961202

0; asc Australia ; (total 52 bytes);

 4: len 1; hex 05; asc ;;

 5: len 26; hex 4175737472616c696120616e64204e6577205a65616c616e6420; asc

Australia and New Zealand ;;

 6: len 5; hex 80761f2400; asc v $;;

 7: len 2; hex 876d; asc m;;

 8: len 4; hex 812267c0; asc "g ;;

 9: len 2; hex cf08; asc ;;

 10: len 5; hex 80055bce00; asc [;;

 11: len 5; hex 8005fecf00; asc ;;

 12: len 30; hex 4175737472616c696120202020202020202020202020202020202020

2020; asc Australia ; (total 45 bytes);

 13: len 30; hex 436f6e737469747574696f6e616c204d6f6e61726368792c20466

5646572; asc Constitutional Monarchy, Feder; (total 45 bytes);

 14: len 30; hex 456c6973616265746820494920202020202020202020202020202020

2020; asc Elisabeth II ; (total 60 bytes);

 15: len 4; hex 80000087; asc ;;

 16: len 2; hex 4155; asc AU;;

Chapter 16 Case study: deadloCks

266

*** (2) TRANSACTION:

TRANSACTION 537545, ACTIVE 0 sec inserting

mysql tables in use 1, locked 1

LOCK WAIT 4 lock struct(s), heap size 1136, 2 row lock(s), undo log entries 2

MySQL thread id 763, OS thread handle 37872, query id 3282591 localhost ::1

root update

INSERT INTO world.city VALUES (4080, 'Darwin', 'AUS', 'Northern Territory',

146000)

*** (2) HOLDS THE LOCK(S):

RECORD LOCKS space id 1924 page no 5 n bits 120 index PRIMARY of table

`world`.`country` trx id 537545 lock_mode X locks rec but not gap

Record lock, heap no 16 PHYSICAL RECORD: n_fields 17; compact format; info

bits 0

 0: len 3; hex 415553; asc AUS;;

 1: len 6; hex 0000000833c9; asc 3 ;;

 2: len 7; hex 02000001750a3c; asc u <;;

 3: len 30; hex 4175737472616c6961202020202020202020202020202020202020202

020; asc Australia ; (total 52 bytes);

 4: len 1; hex 05; asc ;;

 5: len 26; hex 4175737472616c696120616e64204e6577205a65616c616e6420; asc

Australia and New Zealand ;;

 6: len 5; hex 80761f2400; asc v $;;

 7: len 2; hex 876d; asc m;;

 8: len 4; hex 812267c0; asc "g ;;

 9: len 2; hex cf08; asc ;;

 10: len 5; hex 80055bce00; asc [;;

 11: len 5; hex 8005fecf00; asc ;;

 12: len 30; hex 4175737472616c696120202020202020202020202020202020202020

2020; asc Australia ; (total 45 bytes);

 13: len 30; hex 436f6e737469747574696f6e616c204d6f6e61726368792c204665

646572; asc Constitutional Monarchy, Feder; (total 45 bytes);

 14: len 30; hex 456c6973616265746820494920202020202020202020202020202020

2020; asc Elisabeth II ; (total 60 bytes);

 15: len 4; hex 80000087; asc ;;

 16: len 2; hex 4155; asc AU;;

Chapter 16 Case study: deadloCks

267

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:

RECORD LOCKS space id 1923 page no 14 n bits 1272 index CountryCode of

table `world`.`city` trx id 537545 lock_mode X locks gap before rec insert

intention waiting

Record lock, heap no 603 PHYSICAL RECORD: n_fields 2; compact format; info

bits 0

 0: len 3; hex 415554; asc AUT;;

 1: len 4; hex 800005f3; asc ;;

*** WE ROLL BACK TRANSACTION (2)

The deadlock occurred on August 7, 2020, at 20:08:55 in the server time zone.

You can use this information to see if the information is for the same deadlock as the

deadlock reported by a user.

The interesting part is the information for the two transactions. You can see that

transaction 1 was updating the population of the country with Code = 'AUS':

UPDATE world.country SET Population = Population * 1.10 WHERE Code = 'AUS'

Transaction 2 was attempting to insert a new city:

INSERT INTO world.city VALUES (4080, 'Darwin', 'AUS', 'Northern Territory',

146000)

This is a case where the deadlock involved multiple tables. While the two queries

work on different tables, it cannot on its own prove that there are more queries involved

as a foreign key can trigger one query to take locks on two tables. In this case though, the

Code column is the primary key of the country table, and the only foreign key involved is

from the CountryCode column on the city table to the Code column of the country table

(showing this is left as an exercise for the reader using the world sample database). So it

is not likely that two queries deadlock on their own.

Note In MysQl 8.0.17 and earlier, the deadlock information contained less
information about the locks involved. If you are still using an earlier release,
upgrading will make it easier to investigate deadlocks.

Chapter 16 Case study: deadloCks

268

The next thing to observe is what locks are being waited on. Transaction 1 waits for

an exclusive lock on the primary key of the country table:

RECORD LOCKS space id 1924 page no 5 n bits 120 index PRIMARY of table

`world`.`country` trx id 537544 lock_mode X locks rec but not gap waiting

The value of the primary key can be found in the information that follows this

information. It can seem a little overwhelming as InnoDB includes all the information

related to the record. Since it is a primary key record, the whole row is included. This

is useful to understand what data is in the row, particularly if the primary key does

not carry that information on its own, but it can be confusing when you see it the first

time. The primary key of the country table is the first column of the table, so it is the

first line of the record information that contains the value of the primary key the lock is

requesting:

 0: len 3; hex 415553; asc AUS;;

InnoDB includes the value in hexadecimal notation, but also tries to decode it as a

string, so here it is clear that the value is “AUS”, which is not surprising since that is also in

the WHERE clause of the query. It is not always that obvious, so you should always confirm

the value from the lock output. You can also see from the information that the column is

sorted in ascending order in the index.

Transaction 2 waits for an insert intention lock on the CountryCode index of the city

table:

RECORD LOCKS space id 1923 page no 14 n bits 1272 index CountryCode of

table `world`.`city` trx id 537545 lock_mode X locks gap before rec insert

intention waiting

You can see the lock request involves a gap before record. The lock information

is simpler in this case as there are only two columns in the CountryCode index – the

CountryCode column and the primary key (ID column) since the CountryCode index is a

nonunique secondary index. The index is effectively (CountryCode, ID), and the values

for the gap before record are as follows:

 0: len 3; hex 415554; asc AUT;;

 1: len 4; hex 800005f3; asc ;;

Chapter 16 Case study: deadloCks

269

This shows that the value of the CountryCode is “AUT” which is not all that surprising

given it is the next value after “AUS” when sorting in alphabetical ascending order. The

value for the ID column is the hex value 0x5f3 which in decimal is 1523. If you query for

cities with CountryCode = AUT and sort them in order of the CountryCode index, you can

see that ID = 1523 is the first city found:

-- Investigation #3

Connection 3> SELECT *

 FROM world.city

 WHERE CountryCode = 'AUT'

 ORDER BY CountryCode, ID

 LIMIT 1;

+------+------+-------------+----------+------------+

| ID | Name | CountryCode | District | Population |

+------+------+-------------+----------+------------+

| 1523 | Wien | AUT | Wien | 1608144 |

+------+------+-------------+----------+------------+

1 row in set (0.2673 sec)

So far, so good. Since the transactions are waiting for these locks, it can of course be

inferred that the other transaction holds the lock. In version 8.0.18 and later, InnoDB

includes the full list of locks held by both transactions; in earlier versions, InnoDB only

includes this explicitly for one of the transactions, so you need to determine what other

queries the transactions have executed.

From the information available, you can make some educated guesses. For example,

the INSERT statement is blocked by a gap lock on the CountryCode index. An example

of a query that would take that gap lock is a query using the condition CountryCode =

'AUS'. The deadlock information also includes information about the two connections

owning the transactions which may help you:

MySQL thread id 762, OS thread handle 10344, query id 3282590 localhost ::1

root updating

MySQL thread id 763, OS thread handle 37872, query id 3282591 localhost ::1

root update

Chapter 16 Case study: deadloCks

270

You can see both connections were made using the root@localhost account. If you

ensure to have different users for each application and role, the account may help you to

narrow down who executed the transactions.

If the connections still exist, you can also use the events_statements_history table

in the Performance Schema to find the latest queries executed by the connection. This

may not be those involved in the deadlock, depending on whether the connection has

been used for more queries, but may nevertheless provide a clue to what the connection

is used for. If the connections no longer exist, you may in principle be able to find the

queries in the events_statements_history_long table, but you will need to map the

“MySQL thread id” (the connection ID) to the Performance Schema thread ID which

there is no trivial way to do. Also, the events_statements_history_long consumer is

not enabled by default.

In this particular case, both connections are still present, and they have not done

anything other than rolling back the transactions. Listing 16-3 shows how you can find the

queries involved in the transactions. Be aware that in real-world cases, the queries may

return more rows than shown here as it is not possible to add a filter on the event_id.

Listing 16-3. Finding the queries involved in the deadlock

-- Investigation #4

Connection 3> SELECT sql_text, nesting_event_id,

 nesting_event_type, mysql_errno,

 IFNULL(error_name, '') AS error,

 message_text

 FROM performance_schema.events_statements_history

 LEFT OUTER JOIN performance_schema.events_errors_

summary_global_by_error

 ON error_number = mysql_errno

 WHERE thread_id = PS_THREAD_ID(762)

 AND event_id > 6

 ORDER BY event_id\G

*************************** 1. row ***************************

 sql_text: start transaction

 nesting_event_id: NULL

nesting_event_type: NULL

Chapter 16 Case study: deadloCks

271

 mysql_errno: 0

 error:

 message_text: NULL

*************************** 2. row ***************************

 sql_text: UPDATE world.city SET Population = Population * 1.10

WHERE CountryCode = 'AUS'

 nesting_event_id: 8

nesting_event_type: TRANSACTION

 mysql_errno: 0

 error:

 message_text: Rows matched: 14 Changed: 14 Warnings: 0

*************************** 3. row ***************************

 sql_text: UPDATE world.country SET Population = Population * 1.10

WHERE Code = 'AUS'

 nesting_event_id: 8

nesting_event_type: TRANSACTION

 mysql_errno: 0

 error:

 message_text: Rows matched: 1 Changed: 1 Warnings: 0

*************************** 4. row ***************************

 sql_text: rollback

 nesting_event_id: 8

nesting_event_type: TRANSACTION

 mysql_errno: 0

 error:

 message_text: NULL

4 rows in set (0.0016 sec)

-- Investigation #5

Connection 3> SELECT sql_text, nesting_event_id,

 nesting_event_type, mysql_errno,

 IFNULL(error_name, '') AS error,

 message_text

 FROM performance_schema.events_statements_history

 LEFT OUTER JOIN performance_schema.events_errors_

summary_global_by_error

Chapter 16 Case study: deadloCks

272

 ON error_number = mysql_errno

 WHERE thread_id = PS_THREAD_ID(763)

 AND event_id > 6

 ORDER BY event_id\G

*************************** 1. row ***************************

 sql_text: start transaction

 nesting_event_id: NULL

nesting_event_type: NULL

 mysql_errno: 0

 error:

 message_text: NULL

*************************** 2. row ***************************

 sql_text: UPDATE world.country SET Population = Population +

146000 WHERE Code = 'AUS'

 nesting_event_id: 8

nesting_event_type: TRANSACTION

 mysql_errno: 0

 error:

 message_text: Rows matched: 1 Changed: 1 Warnings: 0

*************************** 3. row ***************************

 sql_text: INSERT INTO world.city VALUES (4080, 'Darwin', 'AUS',

'Northern Territory', 146000)

 nesting_event_id: 8

nesting_event_type: TRANSACTION

 mysql_errno: 1213

 error: ER_LOCK_DEADLOCK

 message_text: Deadlock found when trying to get lock; try restarting

transaction

*************************** 4. row ***************************

 sql_text: SHOW WARNINGS

 nesting_event_id: NULL

nesting_event_type: NULL

 mysql_errno: 0

 error:

 message_text: NULL

Chapter 16 Case study: deadloCks

273

*************************** 5. row ***************************

 sql_text: rollback

 nesting_event_id: NULL

nesting_event_type: NULL

 mysql_errno: 0

 error:

 message_text: NULL

5 rows in set (0.0010 sec)

Notice that for connection id 763 (the second of the transactions), the MySQL error

number is included, and the third row has it set to 1213 – a deadlock. MySQL Shell

automatically executes a SHOW WARNINGS statement when an error is encountered which

is the statement in row 4. Notice also that the nesting event is NULL for the ROLLBACK for

transaction 2, but not for the ROLLBACK of transaction 1. That is because the deadlock

triggered the whole transaction to be rolled back (so the ROLLBACK for transaction 2 did

not do anything).

The deadlock was triggered by transaction 1 first updating the population of the

city table and then of the country table. Transaction 2 first updated the population of

the country table and then tried to insert a new city into the city table. This is a typical

example of two workflows updating records in different orders and thus being prone to

deadlocks.

Summarizing the investigation, it consists of two steps:

 1. Analyze the deadlock information from InnoDB to determine the

locks involved in the deadlock, and get as much information as

possible about the connections.

 2. Use other sources such as the Performance Schema to find more

information about the queries in the transactions. Often it is

necessary to analyze the application to get the list of queries.

Now that you know what triggered the deadlock, what is required to solve the issue?

Chapter 16 Case study: deadloCks

274

 The Solution
Deadlocks are the easiest lock situation to resolve as InnoDB automatically chooses

one of the transactions as the victim and rolls it back. In the deadlock examined in the

previous discussion, transaction 2 was chosen as the victim which can be seen from the

deadlock output:

*** WE ROLL BACK TRANSACTION (2)

This means that for transaction 1, there is nothing to do. After transaction 2 has been

rolled back, transaction 1 can continue and complete its work.

For transaction 2, InnoDB has rolled back the whole transaction, so all you need to

do is to retry the transaction. Remember to execute all queries again instead of relying on

values returned during the first attempt; otherwise, you may be using outdated values.

Tip always be prepared to handle deadlocks and lock wait timeouts. For
deadlocks or when the transaction has been rolled back after a lock wait timeout,
retry the entire transaction. For lock wait timeouts where only the query has been
rolled back, retry the query possibly adding a delay.

If deadlocks occur relatively rarely, you do not really need to do anything more.

Deadlocks are a fact of life, so do not be alarmed by encountering a few of them. If

deadlocks cause a significant impact, you need to look at making changes to prevent

some of the deadlocks.

 The Prevention
Reducing deadlocks is very similar to reducing record lock contention in general with

the addition that acquiring the locks in the same order throughout the application is very

important. It is recommended to read Chapter 9 about reducing locking issues again:

• Reduce the work done by each transaction by splitting large

transactions into several smaller ones and adding indexes to reduce

the number of locks taken.

Chapter 16 Case study: deadloCks

275

• Consider the READ COMMITTED transaction isolation level if it is

suitable for your application to reduce the number of locks and how

long they are held.

• Make sure transactions are only held open for as short time as

possible.

• Access records in the same order, if necessary by executing SELECT

... FOR UPDATE or SELECT ... FOR SHARE queries to take the locks

preemptively.

The main points to reduce deadlocks are to reduce the number of locks and how

long they are held and to take them in the same order.

 Summary
In this case study, a deadlock was generated by simulating a workload updating the

population of all cities in a country followed by updating the population of the country.

Simultaneously, another connection added a new city to the same country but first

updated the country’s population and then inserted the new city. This is a classic

example of why deadlocks occur with two different workflows using the same tables but

in opposite order.

The deadlock was investigated primarily using the LATEST DETECTED DEADLOCK

section of the InnoDB monitor output. From this it could be seen which connections

were involved, the last statement they executed, the locks they held, and the locks they

were waiting for. Additionally, the Performance Schema tables with the statement

history were used to find the exact statements involved in the transaction; however,

often, you do not have that luxury and will have to analyze the application to determine

the statements involved.

The good news when a deadlock occurs is that it automatically resolves itself by

rolling back one of the transactions so the other can continue. You will then have to retry

the victim transaction. If you have too many deadlocks, the key points are to reduce the

number of locks and the duration of them and to ensure you take the locks in the same

order for different tasks.

In the next chapter, you will study a case where foreign keys cause lock contention.

Chapter 16 Case study: deadloCks

277
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_17

CHAPTER 17

Case Study: Foreign Keys
One of the more difficult lock contention cases to investigate happens when foreign keys

are involved as you can have queries on different table content for the same locks. This

case study investigates an example where both metadata and InnoDB record locks occur

due to foreign keys. As the symptoms and the cause are the same as for the case study

discussing metadata locks in Chapter 14 and the case study of the InnoDB record locks

in Chapter 15, these are skipped in this discussion.

 The Setup
This case study is more complex than the previous ones, and there is not a simple way

to reproduce it on your own. However, the Listing 17-1 workload in the concurrency_

book module for MySQL Shell will allow you to reproduce the contention. The workload

consists of five connections:

• Two connections that update the sakila.customer table in such a

way that there is always a transaction ongoing with a metadata and

record lock on the table. There is a sleep before the COMMIT to ensure

the duration is long enough to avoid race conditions. The duration of

the sleep can be configured during the execution of the workload.

• One connection that executes ALTER TABLE on the sakila.inventory

table. This uses lock_wait_timeout = 1.

• One connection that updates the sakila.film_category table.

• One connection that updates the sakila.category table. This uses

innodb_lock_wait_timeout = 1.

https://doi.org/10.1007/978-1-4842-6652-6_17#DOI

278

When you execute the workload, after entering the password, you will be asked to

enter the runtime of the test and how long the two connections updating the sakila.

customer table should sleep for committing their transactions. The sleep is specified as a

factor that is multiplied with 0.1 second.

Note The test is not deterministic in the sense that you should expect to see
different data even when reproducing the same issue.

Once the test has started, various monitoring outputs will be displayed so you can

investigate the issue.

Listing 17-1 shows part of the output of an example execution of the workload (the

exact number of locks encountered and values of the various metrics will differ from

execution to execution). The complete output is available in listing_17-1.txt in this

book’s GitHub repository. Several parts of the output will also be used in the discussion

in the remainder of the chapter.

Listing 17-1. Locks and foreign keys

Specify the number of seconds to run for (10-3600) [15]:

Specify the sleep factor (0-30) [15]:

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 462 792 6

-- 2 463 793 6

-- 3 464 794 6

-- 4 465 795 6

-- 5 466 796 6

mysql> SELECT error_number, error_name, sum_error_raised

 FROM performance_schema.events_errors_summary_global_by_error

 WHERE error_name IN ('ER_LOCK_WAIT_TIMEOUT', 'ER_LOCK_DEADLOCK');

ChapTer 17 Case sTudy: Foreign Keys

279

+--------------+----------------------+------------------+

| error_number | error_name | sum_error_raised |

+--------------+----------------------+------------------+

| 1205 | ER_LOCK_WAIT_TIMEOUT | 310 |

| 1213 | ER_LOCK_DEADLOCK | 12 |

+--------------+----------------------+------------------+

...

mysql> UPDATE sakila.category SET name = IF(name = 'Travel', 'Exploring',

'Travel') WHERE category_id = 16;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

mysql> ALTER TABLE sakila.inventory FORCE;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction --

Metrics reported by rate collected during the test:

time,innodb_row_lock_time,innodb_row_lock_waits,lock_deadlocks,lock_

timeouts

2020-08-02 14:17:12.168000,0.0,0.0,0.0,0.0

2020-08-02 14:17:13.180000,0.0,0.0,0.0,0.0

2020-08-02 14:17:14.168000,0.0,1.0121457489878543,0.0,0.0

2020-08-02 14:17:15.177000,0.0,0.0,0.0,0.0

2020-08-02 14:17:16.168000,2019.1725529767912,1.0090817356205852,0.0,1.0090

817356205852

2020-08-02 14:17:17.169000,0.0,0.0,0.0,0.0

2020-08-02 14:17:18.180000,1541.0484668644908,0.0,0.0,0.9891196834817014

2020-08-02 14:17:19.180000,0.0,0.0,0.0,0.0

2020-08-02 14:17:20.168000,0.0,0.0,0.0,0.0

2020-08-02 14:17:21.180000,0.0,0.0,0.0,0.0

2020-08-02 14:17:22.168000,82.99595141700405,2.0242914979757085,0.0,0.0

2020-08-02 14:17:23.179000,0.0,0.0,0.0,0.0

2020-08-02 14:17:24.180000,1997.0029970029973,0.9990009990009991,0.0,0.9990

009990009991

2020-08-02 14:17:25.179000,0.0,0.0,0.0,0.0

2020-08-02 14:17:26.182000,2115.6530408773683,0.9970089730807579,0.0,0.9970

089730807579

2020-08-02 14:17:27.180000,0.0,0.0,0.0,0.0

ChapTer 17 Case sTudy: Foreign Keys

280

2020-08-02 14:17:28.168000,0.0,0.0,0.0,0.0

2020-08-02 14:17:29.180000,0.0,0.0,0.0,0.0

2020-08-02 14:17:30.168000,66.80161943319838,2.0242914979757085,0.0,0.0

mysql> SELECT error_number, error_name, sum_error_raised

 FROM performance_schema.events_errors_summary_global_by_error

 WHERE error_name IN ('ER_LOCK_WAIT_TIMEOUT', 'ER_LOCK_DEADLOCK');

+--------------+----------------------+------------------+

| error_number | error_name | sum_error_raised |

+--------------+----------------------+------------------+

| 1205 | ER_LOCK_WAIT_TIMEOUT | 317 |

| 1213 | ER_LOCK_DEADLOCK | 12 |

+--------------+----------------------+------------------+

...

2020-08-02 14:17:30.664018 0 [INFO] Stopping the threads.

2020-08-02 14:17:33.818122 0 [INFO] Completing the workload Listing 17-1

2020-08-02 14:17:33.820075 0 [INFO] Disconnecting for the workload Listing 17-1

2020-08-02 14:17:33.820075 0 [INFO] Completed the workload Listing 17-1

First, questions for the runtime and sleep factor are prompted. For this discussion,

the default values will work, but you are encouraged to try other settings for your own

testing. Particularly, lowering the sleep factor to 8 or lower will make the ALTER TABLE

start to succeed, and you will see the ER_LOCK_DEADLOCK counter increment; this is a

metadata deadlock.

Note as concurrent workloads in MysQL shell are not entirely thread safe, it can
occasionally be necessary to retry the test.

Second, some initial monitoring information is printed. The same monitoring is

performed at the end of the test, so you can get information about the number of errors

that occurred and other metrics. The monitoring information at the end of the test

also includes information in CSV format that you can copy into a spreadsheet and, for

example, create a graph for.

ChapTer 17 Case sTudy: Foreign Keys

281

Otherwise, the output contains information about metadata locks and lock waits as

well as the statements experiencing lock wait timeouts.

 The Discussion
The investigation will usually go through several steps. First, the errors logged by the

application and the monitoring will be covered. Second, the lock metrics are discussed.

Third, the metadata locks are covered, and finally the InnoDB lock contention is

discussed.

 Errors and High-Level Monitoring
The first thing you are likely to notice is that the application is experiencing errors; in

this case they are lock wait timeouts. In a real-world case, you may not get the errors as

directly as in this case study. If you do not handle the errors, you may see the application

error out or even crash. It is important always to handle the errors and preferably log the

errors, so you can keep track of the issues the application experiences, and log analyzers

such as Splunk1 can be used to analyze the frequency of the errors. Examples of the

errors from this case study include

mysql> UPDATE sakila.category SET name = IF(name = 'Travel', 'Exploring',

'Travel') WHERE category_id = 16;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

mysql> ALTER TABLE sakila.inventory FORCE;

ERROR: 1205: Lock wait timeout exceeded; try restarting transaction

You can also look at your monitoring which should include information about

InnoDB lock waits similar to what is shown in Figure 17-1, that is, the number of InnoDB

lock waits, the number of InnoDB lock wait timeouts, and the InnoDB lock time in

milliseconds measured during the test.

1 https://www.splunk.com/

ChapTer 17 Case sTudy: Foreign Keys

https://www.splunk.com/

282

The current waits are the direct measurements, whereas the lock timeouts and lock

time are the difference compared to the previous measurement. The current waits and

lock timeouts use the y-axis on the left and are represented by bars, whereas the lock

time is shown in a line graph using the y-axis on the right. The x-axis is the time into

the test.

From the graphs you can see the locking issue is intermittent, and you can use it to

determine when the issue happens. If you have a monitoring solution that allows you

to see which queries are running during a given interval, you can use that to investigate

the workload causing the lock waits. Examples of monitoring solutions that support

this are MySQL Enterprise Monitor (also known as MEM)2, Solarwinds Database

Performance Monitor (DPM, formerly VividCortex)3, and Percona Monitoring and

Management (PMM).4

2 https://www.mysql.com/products/enterprise/monitor.html
3 https://www.solarwinds.com/database-performance-monitor
4 https://www.percona.com/software/database-tools/percona-monitoring-and-management

Figure 17-1. InnoDB lock wait metrics

ChapTer 17 Case sTudy: Foreign Keys

https://www.mysql.com/products/enterprise/monitor.html
https://www.solarwinds.com/database-performance-monitor
https://www.percona.com/software/database-tools/percona-monitoring-and-management

283

 Lock Metrics
The monitoring of the lock metrics makes it easy to spot periods with increased

lock contention, and it is worth discussing the metrics some more. For InnoDB, it is

straightforward to monitor the lock waits as just shown, but unfortunately, there are no

metrics that can easily give the same kind of information for metadata locks. You can

use the error statistics from the Performance Schema to track the number of lock wait

timeouts and deadlocks:

mysql> SELECT error_number, error_name, sum_error_raised

 FROM performance_schema.events_errors_summary_global_by_error

 WHERE error_name IN ('ER_LOCK_WAIT_TIMEOUT', 'ER_LOCK_DEADLOCK');

+--------------+----------------------+------------------+

| error_number | error_name | sum_error_raised |

+--------------+----------------------+------------------+

| 1205 | ER_LOCK_WAIT_TIMEOUT | 310 |

| 1213 | ER_LOCK_DEADLOCK | 12 |

+--------------+----------------------+------------------+

...

mysql> SELECT error_number, error_name, sum_error_raised

 FROM performance_schema.events_errors_summary_global_by_error

 WHERE error_name IN ('ER_LOCK_WAIT_TIMEOUT', 'ER_LOCK_DEADLOCK');

+--------------+----------------------+------------------+

| error_number | error_name | sum_error_raised |

+--------------+----------------------+------------------+

| 1205 | ER_LOCK_WAIT_TIMEOUT | 317 |

| 1213 | ER_LOCK_DEADLOCK | 12 |

+--------------+----------------------+------------------+

This shows that during this test, there were seven lock wait timeouts and no

deadlocks. The problem with this information is that it does not tell you whether

it is metadata locks, InnoDB locks, or some third lock type that experienced a lock

wait timeout or deadlock. That said, since InnoDB has its own lock wait timeout and

deadlock statistics, you can derive the numbers for non-InnoDB locks by subtracting the

two statistics. The InnoDB lock statistics for the test are shown in Listing 17-2.

ChapTer 17 Case sTudy: Foreign Keys

284

Listing 17-2. The InnoDB lock statistics for the test

mysql> SELECT Variable_name, Variable_value

 FROM sys.metrics

 WHERE Variable_name IN (

 'innodb_row_lock_current_waits',

 'lock_row_lock_current_waits',

 'innodb_row_lock_time',

 'innodb_row_lock_waits',

 'lock_deadlocks',

 'lock_timeouts'

);

+-------------------------------+----------------+

| Variable_name | Variable_value |

+-------------------------------+----------------+

| innodb_row_lock_current_waits | 0 |

| innodb_row_lock_time | 409555 |

| innodb_row_lock_waits | 384 |

| lock_deadlocks | 0 |

| lock_row_lock_current_waits | 0 |

| lock_timeouts | 188 |

+-------------------------------+----------------+

...

mysql> SELECT Variable_name, Variable_value

 FROM sys.metrics

 WHERE Variable_name IN (

 'innodb_row_lock_current_waits',

 'lock_row_lock_current_waits',

 'innodb_row_lock_time',

 'innodb_row_lock_waits',

 'lock_deadlocks',

 'lock_timeouts'

)

ChapTer 17 Case sTudy: Foreign Keys

285

+-------------------------------+----------------+

| Variable_name | Variable_value |

+-------------------------------+----------------+

| innodb_row_lock_current_waits | 1 |

| innodb_row_lock_time | 417383 |

| innodb_row_lock_waits | 392 |

| lock_deadlocks | 0 |

| lock_row_lock_current_waits | 1 |

| lock_timeouts | 192 |

+-------------------------------+----------------+

Here you can see there were a total of four InnoDB lock wait timeouts (the lock_

timeouts status counter) out of the total seven ER_LOCK_WAIT_TIMEOUT errors, so you can

conclude there were three non-InnoDB lock wait timeouts. In this case study, these are

all metadata lock wait timeouts.

 Metadata Lock Contention
In practice it is best if you can catch the lock contention while it is ongoing as shown

in the earlier case studies. In the output of this example, there are outputs from the

performance_schema.metadata_locks table as well as the schema_table_lock_waits

and innodb_lock_waits sys schema views. The metadata_locks table highlights the

extent of the spread of metadata locks as it can be seen from Listing 17-3.

Listing 17-3. The metadata locks found during the test

mysql> SELECT object_name, lock_type, lock_status,

 owner_thread_id, owner_event_id

 FROM performance_schema.metadata_locks

 WHERE object_type = 'TABLE'

 AND object_schema = 'sakila'

 ORDER BY owner_thread_id, object_name, lock_type\G

*************************** 1. row ***************************

 object_name: category

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 792

 owner_event_id: 9

ChapTer 17 Case sTudy: Foreign Keys

286

*************************** 2. row ***************************

 object_name: film

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 792

 owner_event_id: 9

*************************** 3. row ***************************

 object_name: film_category

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 792

 owner_event_id: 9

*************************** 4. row ***************************

 object_name: category

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 793

 owner_event_id: 9

*************************** 5. row ***************************

 object_name: film

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 793

 owner_event_id: 9

*************************** 6. row ***************************

 object_name: film_category

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 793

 owner_event_id: 9

*************************** 7. row ***************************

 object_name: address

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 794

 owner_event_id: 10

ChapTer 17 Case sTudy: Foreign Keys

287

*************************** 8. row ***************************

 object_name: customer

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 794

 owner_event_id: 10

*************************** 9. row ***************************

 object_name: inventory

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 794

 owner_event_id: 10

*************************** 10. row ***************************

 object_name: payment

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 794

 owner_event_id: 10

*************************** 11. row ***************************

 object_name: rental

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 794

 owner_event_id: 10

*************************** 12. row ***************************

 object_name: staff

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 794

 owner_event_id: 10

*************************** 13. row ***************************

 object_name: store

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 794

 owner_event_id: 10

ChapTer 17 Case sTudy: Foreign Keys

288

*************************** 14. row ***************************

 object_name: address

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 795

 owner_event_id: 10

*************************** 15. row ***************************

 object_name: customer

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 795

 owner_event_id: 10

*************************** 16. row ***************************

 object_name: inventory

 lock_type: SHARED_READ

 lock_status: PENDING

owner_thread_id: 795

 owner_event_id: 10

*************************** 17. row ***************************

 object_name: payment

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 795

 owner_event_id: 10

*************************** 18. row ***************************

 object_name: rental

 lock_type: SHARED_WRITE

 lock_status: GRANTED

owner_thread_id: 795

 owner_event_id: 10

*************************** 19. row ***************************

 object_name: staff

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 795

 owner_event_id: 10

ChapTer 17 Case sTudy: Foreign Keys

289

*************************** 20. row ***************************

 object_name: store

 lock_type: SHARED_READ

 lock_status: GRANTED

owner_thread_id: 795

 owner_event_id: 10

*************************** 21. row ***************************

 object_name: #sql-35e8_1d2

 lock_type: EXCLUSIVE

 lock_status: GRANTED

owner_thread_id: 796

 owner_event_id: 9

*************************** 22. row ***************************

 object_name: film

 lock_type: SHARED_UPGRADABLE

 lock_status: GRANTED

owner_thread_id: 796

 owner_event_id: 9

*************************** 23. row ***************************

 object_name: inventory

 lock_type: EXCLUSIVE

 lock_status: PENDING

owner_thread_id: 796

 owner_event_id: 9

*************************** 24. row ***************************

 object_name: inventory

 lock_type: SHARED_UPGRADABLE

 lock_status: GRANTED

owner_thread_id: 796

 owner_event_id: 9

*************************** 25. row ***************************

 object_name: rental

 lock_type: SHARED_UPGRADABLE

 lock_status: GRANTED

owner_thread_id: 796

 owner_event_id: 9

ChapTer 17 Case sTudy: Foreign Keys

290

*************************** 26. row ***************************

 object_name: store

 lock_type: SHARED_UPGRADABLE

 lock_status: GRANTED

owner_thread_id: 796

 owner_event_id: 9

The two pending locks (rows 16 and 23) are for the ALTER TABLE and one of the

UPDATE statements on the customer table.

At the point in time where this output was collected, there are 26 granted or

pending metadata locks by just five threads. All the statements just query a single table

(technically the ALTER TABLE has a second table – the one named #sql-35e8_1d2 in this

example, but that is the temporary table name used for rebuilding the inventory table).

Grouping the locks by the table name, you can see there are metadata locks for 11 tables

including the temporary table (the numbers may not add up with the previous output as

they are not made on the exact same time):

mysql> SELECT object_name, COUNT(*)

 FROM performance_schema.metadata_locks

 WHERE object_type = 'TABLE'

 AND object_schema = 'sakila'

 GROUP BY object_name

 ORDER BY object_name;

+---------------+----------+

| object_name | COUNT(*) |

+---------------+----------+

| #sql-35e8_1d2 | 1 |

| address | 2 |

| category | 2 |

| customer | 2 |

| film | 3 |

| film_category | 2 |

| inventory | 4 |

| payment | 2 |

| rental | 3 |

ChapTer 17 Case sTudy: Foreign Keys

291

| staff | 2 |

| store | 3 |

+---------------+----------+

The reason for all of these tables being affected is that the sakila schema is a heavy

user of foreign keys. Figure 17-2 shows the tables and their foreign key relationships.

In the figure, only the columns that are part of the table’s primary key or are part of a

foreign key are included.

Figure 17-2. The relationship between the tables in the test

ChapTer 17 Case sTudy: Foreign Keys

292

For finding the statements that cause the lock wait timeouts for the ALTER TABLE, the

simplest is to use the sys.schema_table_lock_waits view as discussed in Chapter 14.

The steps are left as an exercise for the reader. The conflicting statements are the updates

on the customer table and the ALTER TABLE on the inventory table.

 InnoDB Lock Contention
When you consider the foreign key relationships between the tables in the previous

section, it is easy to jump to the conclusion that the lock wait timeout for the UPDATE

statement on the category table is also due to metadata locks cascading from the ALTER

TABLE on the inventory table. However, you must be careful and study the facts before

making such conclusions – and in this case, the conclusion is wrong.

If you look at the information from the metadata_locks table, you can see none of

the pending locks are for the category table:

*************************** 16. row ***************************

 object_name: inventory

 lock_type: SHARED_READ

 lock_status: PENDING

owner_thread_id: 795

 owner_event_id: 10

...

*************************** 23. row ***************************

 object_name: inventory

 lock_type: EXCLUSIVE

 lock_status: PENDING

owner_thread_id: 796

 owner_event_id: 9

This is the key message here. While knowledge of the schema is important, you

should start out looking at the lock wait information and then use the schema knowledge

to understand why the locks occur rather than try to guess at what locks may exist based

on the schema knowledge.

The monitoring discussed earlier did show that there were InnoDB lock wait

timeouts, and the sys.innodb_lock_waits output in Listing 17-4 shows which are the

conflicting locks and statements.

ChapTer 17 Case sTudy: Foreign Keys

293

Listing 17-4. The InnoDB lock waits during the test

mysql> SELECT * FROM sys.innodb_lock_waits\G

*************************** 1. row ***************************

 wait_started: 2020-08-02 14:17:13

 wait_age: 00:00:02

 wait_age_secs: 2

 locked_table: `sakila`.`category`

 locked_table_schema: sakila

 locked_table_name: category

 locked_table_partition: None

 locked_table_subpartition: None

 locked_index: PRIMARY

 locked_type: RECORD

 waiting_trx_id: 535860

 waiting_trx_started: 2020-08-02 14:17:13

 waiting_trx_age: 00:00:02

 waiting_trx_rows_locked: 1

 waiting_trx_rows_modified: 0

 waiting_pid: 463

 waiting_query: UPDATE sakila.category SET name = IF(name =

'Travel', 'Exploring', 'Travel') WHERE category_id = 16

 waiting_lock_id: 2711671600928:1795:4:282:2711634698920

 waiting_lock_mode: X,REC_NOT_GAP

 blocking_trx_id: 535859

 blocking_pid: 462

 blocking_query: None

 blocking_lock_id: 2711671600096:1795:4:282:2711634694976

 blocking_lock_mode: S,REC_NOT_GAP

 blocking_trx_started: 2020-08-02 14:17:13

 blocking_trx_age: 00:00:02

 blocking_trx_rows_locked: 5

 blocking_trx_rows_modified: 2

 sql_kill_blocking_query: KILL QUERY 462

sql_kill_blocking_connection: KILL 462

1 row in set (0.0017 sec)

ChapTer 17 Case sTudy: Foreign Keys

294

The lock contention is on the primary key of the category table with process list id

462 being the blocking connection. This connection is idle at the time of the output, so

you need to use the Performance Schema statement history tables or the query analysis

in your monitoring solution or study the application or a combination of them to

determine which queries were executed by the transaction. In this case, it is the update

of the film_category table (formatted for readability):

UPDATE sakila.film_category

 SET category_id = IF(category_id = 7, 16, 7)

 WHERE film_id = 64;

The reason this causes a lock on the category table is that there is a foreign key

between the category_id column in the film_category and category tables, so when

the connection with process list id 463 tries to update the row in the category table with

the same id as connection 462 has updated, it will block until 462 is committed or rolled

back.

 The Solution and Prevention
The solutions and preventions discussed in Chapters 14 and 15 also apply in the case

where foreign keys are involved. This means that the most effective way to avoid the

issues in the first place is to avoid long-running transactions, and as a quick way to

unblock metadata lock waits, you can kill the DDL statement requesting exclusive locks.

Note Foreign keys are a bigger issue with metadata locks than for innodB record
locks as the latter only affect cases where the columns used in foreign keys are
involved.

When foreign keys are present, it can be particularly useful to keep a low value for

lock_wait_timeout to avoid a large number of metadata lock requests across many

tables to be requested or held for extended periods while waiting for all the requests to

be granted. This can potentially be combined with reducing the value of max_write_

lock_count to avoid stalling requests for shared metadata locks requested through

foreign keys on busy tables. (Reducing max_write_lock_count will not change this case

study.)

ChapTer 17 Case sTudy: Foreign Keys

295

If you have severe problems with lock contention due to foreign keys, one possibility

is to move the responsibility of keeping the data consistent into the application. You

should however be aware this does remove the insurance at the MySQL level to keep the

data consistent (the C in ACID), so it is not recommended. That said, in some cases, it

may be the only way to avoid excessive locking in high concurrency systems.

Caution While handling foreign key relations in the application can help reduce
locking in the database, be careful as it also weakens the consistency guarantees.

Additionally, some general solutions exist that are not special to foreign keys:

• If the locks are held for too long, for example, because of an

abandoned transaction, consider killing the blocking transaction, but

remember to take into account the number of changes that will have

to be rolled back.

• Remember to handle a transaction that has a query failing with a lock

wait timeout, so the transaction does not stay around with the locks

taken before the statement that failed.

• Consider what you can do to reduce the duration and size of your

transactions.

• Use indexes to reduce the number of records accessed.

• Consider the READ COMMITTED transaction isolation level, if it is

suitable for your application.

 Summary
This chapter went through a case study with simultaneous metadata lock and InnoDB

lock contention caused by foreign keys. The main discussion point was how the locks

spread to other tables than the ones used by the queries. This is particularly the case for

metadata locks, whereas the effect is less for InnoDB record locks as extra locks are only

taken when columns used for the foreign keys are involved.

ChapTer 17 Case sTudy: Foreign Keys

296

The principles of investigating the lock issues are the same as when foreign keys are

not involved; however, it is more difficult due to the number of locks involved; for the

metadata locks in the example, there were 26 lock requests returned by performance_

schema.metadata_locks. It is thus particularly useful to use the sys schema views to

help with the analysis.

In addition to the usual methods to reduce lock issues, for metadata locks, you

can consider combining a low lock_wait_timeout with a relatively low value of

max_write_lock_count. Another option that can help for both metadata and InnoDB

locks is to leave the responsibility of guaranteeing the consistency of the foreign keys to

the application; however, be very careful if you do that as it will not provide as strong a

guarantee as when MySQL handles it.

There remains one case study left which covers a case where there are semaphore

waits in InnoDB as it will be discussed in the next chapter.

ChapTer 17 Case sTudy: Foreign Keys

297
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6_18

CHAPTER 18

Case Study: Semaphores
Mutex and semaphore contention is one of the most elusive kinds of contention you

can come across as except for extreme situations, you will not directly notice any issues.

Instead, the contention tends to materialize as an overall added latency and throughput

reduction that can be hard to put your finger on. Then out of the blue, you may have

crossed a load threshold, and the contention causes your server to come to a grinding

halt.

This chapter goes through a case study of investigating contention on the adaptive

hash index rw-semaphore. However, do be aware that semaphore contention differs

depending on the mutex or semaphore where the contention occurs, and so does the

investigation required to solve it. In high-severity cases, you may also find that you have

contention on multiple semaphore waits at the same time.

 The Symptoms
The two most common ways to notice that there is contention on an InnoDB mutex or

semaphore are through the InnoDB monitor and the innodb_rwlock_% InnoDB metrics.

In the InnoDB monitor output, you will see ongoing waits in the SEMAPHORES section

near the top of the output, for example

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 77606

--Thread 19304 has waited at btr0sea.ic line 122 for 0 seconds the

semaphore:

S-lock on RW-latch at 00000215E6DC12F8 created in file btr0sea.cc line 202

a writer (thread id 11100) has reserved it in mode exclusive

number of readers 0, waiters flag 1, lock_word: 0

https://doi.org/10.1007/978-1-4842-6652-6_18#DOI

298

Last time read locked in file btr0sea.ic line 122

Last time write locked in file G:\ade\build\sb_0-39697839-1592332179.68\

mysql-8.0.21\storage\innobase\btr\btr0sea.cc line 1197

--Thread 26128 has waited at btr0sea.ic line 92 for 0 seconds the

semaphore:

X-lock on RW-latch at 00000215E6DC12F8 created in file btr0sea.cc line 202

a writer (thread id 11100) has reserved it in mode exclusive

number of readers 0, waiters flag 1, lock_word: 0

Last time read locked in file btr0sea.ic line 122

Last time write locked in file G:\ade\build\sb_0-39697839-1592332179.68\

mysql-8.0.21\storage\innobase\btr\btr0sea.cc line 1197

OS WAIT ARRAY INFO: signal count 93040

RW-shared spins 18200, rounds 38449, OS waits 20044

RW-excl spins 22345, rounds 1121445, OS waits 38469

RW-sx spins 3684, rounds 100410, OS waits 2886

Spin rounds per wait: 2.11 RW-shared, 50.19 RW-excl, 27.26 RW-sx

The more waits and the longer they have been waiting, the more severe the issue is.

You may also notice in your monitoring that the number of rw-lock waits is high and

possibly spiky at the time of high load. In one real-world example where there was severe

contention on the adaptive hash index, there were tens of thousands of OS waits per

second for extended periods of time.

 The Cause
The issue is that requests for a shared resource, such as access to the adaptive hash

index, arrive faster than they can be handled. These resources are protected inside the

source code using mutexes and rw-locks. Contention indicates that either you have hit

the concurrency limit of the MySQL version you are using for your workload or that your

need to split the resource into more parts or similar.

Chapter 18 Case study: semaphores

299

 The Setup
Reproducing semaphore contention at will can be difficult to do at will. The more CPUs

you have available on your system, the more likely it is that you generate a workload that

experiences semaphore waits.

The outputs for the discussion in this chapter have been generated with the

Listing 8-1 workload on a laptop with eight CPUs and the buffer pool set to the

default size of 128 MiB. If you try to reproduce the case, then you may need to

experiment with the number of connections. The script prompts you for these

defaulting to 1 read-write thread and using one connection per remaining CPU for

read-only connections.

Note mysQL shell’s session objects are not entirely thread safe even with each
thread having its own session. For this reason, it can be necessary to attempt the
test a couple of times. the issue is particularly seen on microsoft Windows with
multiple read-write connections.

You can also try to change the size of the buffer pool. An option is also to reduce the

flushing when committing transactions which particularly can help if your disk has poor

flush performance:

SET GLOBAL innodb_flush_log_at_trx_commit = 0,

 GLOBAL sync_binlog = 0;

Caution reducing flushing is fine on a test system, but you should not do that on
a production system as you may end up losing committed transactions in case of a
crash.

Running for a longer time can also increase the chance of seeing contention at least

once.

The test also allows you to request MySQL to be restarted before the test, and you can

choose whether to delete the indexes that the test creates. Restarting MySQL allows you

to see the difference of starting out with a cold InnoDB buffer pool (though the workload

does do its own warmup of the buffer pool).

Chapter 18 Case study: semaphores

300

Note restarting mysQL from the test only works if you have started mysQL
under a supervisor process. this, for example, happens when you start mysQL as a
service on microsoft Windows, using mysqld_safe, or through systemd on Linux.

If you want to run the test several times, it can be an advantage to tell the test not to

delete its indexes as that allows the test to skip the creation on the next execution.

An example of executing the test case is shown in Listing 18-1. The full output of

the execution is included in the file listing_18-1.txt that is available from this book’s

GitHub repository.

Listing 18-1. Semaphore waits

Specify the number of read-write connections (0-31) [1]:

Specify the number of read-only connections (1-31) [7]:

Specify the number of seconds to run for (1-3600) [10]:

Restart MySQL before executing the test? (Y|Yes|N|No) [No]:

Delete the test specific indexes after executing the test? (Y|Yes|N|No)

[Yes]:

2020-07-25 15:56:33.928772 0 [INFO] Adding 1 index to the dept_emp table

2020-07-25 15:56:43.238872 0 [INFO] Adding 1 index to the employees table

2020-07-25 15:56:54.202735 0 [INFO] Adding 1 index to the salaries table

2020-07-25 15:57:47.050114 0 [INFO] Warming up the InnoDB buffer pool.

2020-07-25 15:58:04.543354 0 [INFO] Waiting 2 seconds to let the

monitoring collect some information before starting the test.

2020-07-25 15:58:06.544765 0 [INFO] Starting the work connections.

2020-07-25 15:58:07.556126 0 [INFO] Completed 10%

…

-- Total mutex and rw-semaphore waits during test:

+----------------+-------+

| File:Line | Waits |

+----------------+-------+

| btr0sea.cc:202 | 13368 |

+----------------+-------+

Chapter 18 Case study: semaphores

301

-- Total execution time: 25.685603 seconds

2020-07-25 15:58:34.374196 0 [INFO] Dropping indexes on the dept_emp table.

2020-07-25 15:58:35.651209 0 [INFO] Dropping indexes on the employees table.

2020-07-25 15:58:36.344171 0 [INFO] Dropping indexes on the salaries table.

Notice that at the start of the example, there are five prompts for information on how

to run the test.

When the test reproduces the issue, you will see one or more outputs of the

SEMAPHORES section from the InnoDB monitor output, and at the end, some diagnostics

data is generated. This data includes

• RW-lock metrics collected every second during the test. This is

printed in CSV format, so you can copy it into a spreadsheet and plot

it.

• Adaptive hash index metrics collected every second during the test.

This is also printed in CSV format.

• The total number of pages as well as the rate made young or not

made young in the InnoDB buffer pool.

• The INSERT BUFFER AND ADAPTIVE HASH INDEX section as it looks at

the end of the test.

• The total mutex and rw-semaphore waits during test.

The read-only workload consists of a join between three tables in the employees

database which includes a large number of secondary index lookups:

SELECT dept_name, MIN(salary) min_salary,

 AVG(salary) AS avg_salary, MAX(salary) AS max_salary

 FROM employees.departments

 INNER JOIN employees.dept_emp USING (dept_no)

 INNER JOIN employees.salaries USING (emp_no)

 WHERE dept_emp.to_date = '9999-01-01'

 AND salaries.to_date = '9999-01-01'

 GROUP BY dept_no

 ORDER BY dept_name;

Chapter 18 Case study: semaphores

302

The read-write workload chooses a random last name from the employees.employees

table and gives all employees with that surname a pay rise. With placeholders, the steps are

SELECT last_name

 FROM employees.employees

 WHERE emp_no = ?;

SELECT emp_no, salary, from_date + INTERVAL 1 DAY

 FROM employees.employees

 INNER JOIN employees.salaries USING (emp_no)

 WHERE employees.last_name = ?

 AND to_date = '9999-01-01';

For each employee found in the previous query,

execute the insert and update:

INSERT INTO employees.salaries

VALUES (?, ?, ?, '9999-01-01');

UPDATE employees.salaries

 SET to_date = ?

 WHERE emp_no = ? AND to_date = '9999-01-01';

This means that the data in the employees database is modified. You do not need

to reload the data between each test, but you may want to reset it when you are done

testing if you want to have the original data returned.

Three indexes have been added to the tables to ensure the necessary secondary

indexes are present to cause the contention (remember the adaptive hash index is only

used for secondary indexes):

ALTER TABLE employees.dept_emp

 ADD INDEX idx_concurrency_book_0 (dept_no, to_date);

ALTER TABLE employees.employees

 ADD INDEX idx_concurrency_book_1 (last_name, first_name);

ALTER TABLE employees.salaries

 ADD INDEX idx_concurrency_book_2 (emp_no, to_date, salary);

The indexes are dropped again at the end of the test unless you request to keep them.

Chapter 18 Case study: semaphores

303

Finally, to avoid premature eviction of the pages read into the buffer pool during the

test, the old blocks time is set to 0 for the duration of the test:

SET GLOBAL innodb_old_blocks_time = 0;

This helps putting the buffer pool under higher pressure than it otherwise would be

which makes it more likely to reproduce the contention. The variable is set back to 1000

(the default value) at the end of the test.

Note the test will take longer than the runtime you specify as the runtime is only
checked at the start of each loop of queries. so, all pending queries in a loop will
complete.

Now that the workload causing the issue has been established, it is time to start the

investigation.

 The Investigation
When you encounter semaphore contention, the first port of call is usually your

monitoring system where you can get an overview of the contention. While you can

query the metrics yourself, the semaphore waits tend to fluctuate, and you may well have

periods with no contention and only see the issue during the busiest periods or when

specific workloads are executed. Viewing the metrics in a graph makes it much easier to

determine when the contention occurs.

This section discusses how you can monitor the innodb_rwlock_% metrics, the

SEMAPHORES section of the InnoDB monitor, the InnoDB mutex monitor, and determining

the workload.

 The InnoDB RW-Lock Metrics
One option is to start your investigation by looking at the innodb_rwlock_% metrics

from information_schema.INNODB_METRICS or sys.metrics. There are three groups

of metrics: for shared, for shared-exclusive, and for exclusive rw-locks. Each group

has three metrics: number of spin waits, number of spin rounds, and number of

operating system waits. The CSV output at the end of the test includes the metrics for

Chapter 18 Case study: semaphores

304

the shared and exclusive groups. (The shared-exclusive rw-locks are not of interest in

this investigation.) Figure 18-1 shows an example of the metrics for the shared rw-locks

plotted with the time into the test on the x-axis.

Here the number of spin waits is almost constant during the test, but the number of

spin rounds (the top line in the graph) greatly increases around 7 seconds into the test.

This also causes the number of OS waits to increase. That the OS waits jump up means

that the spin rounds for a spin wait exceed innodb_sync_spin_loops (defaults to 30).

The picture for the exclusive rw-locks is similar except that the number of spin

rounds is much higher as shown in Figure 18-2.

Figure 18-1. The number of waits and spin rounds for shared rw-locks

Chapter 18 Case study: semaphores

305

While it is hard to see because the number of spin rounds dwarfs the spin and OS

waits, they do follow the same pattern as for the shared rw-locks, and the absolute

numbers for the waits are around twice that of the shared locks. The number of waits

that is cause of concern depends on your workload, and the more concurrent queries

you have, the larger the number of waits there is in general. You should particularly keep

an eye on the OS waits as those increase when the waits happen for so long that the

thread is suspended.

 InnoDB Monitor and Mutex Monitor
When you have established when the contention occurs, you need to determine which

rw-lock the contention is for (there may be more than one rw-lock). There are two main

tools to determine where the contention occurs of which the first is the InnoDB monitor.

Unless you have enabled it so it automatically outputs to the error log or the contention

Figure 18-2. The number of waits and spin rounds for exclusive rw-locks

Chapter 18 Case study: semaphores

306

is so bad that the semaphore waits exceed 240 seconds, then you need to catch your

system in the act of experiencing contention. Listing 18-2 shows an example of the

SEMAPHORES section of the InnoDB monitor output from the test.

Listing 18-2. The SEMAPHORES section of the InnoDB monitor

mysql> SHOW ENGINE INNODB STATUS\G

...

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 36040

--Thread 35592 has waited at btr0sea.ic line 92 for 0 seconds the semaphore:

X-lock on RW-latch at 000001BD277CCFF8 created in file btr0sea.cc line 202

a writer (thread id 25492) has reserved it in mode exclusive

number of readers 0, waiters flag 1, lock_word: 0

Last time read locked in file btr0sea.ic line 122

Last time write locked in file G:\ade\build\sb_0-39697839-1592332179.68\

mysql-8.0.21\storage\innobase\include\btr0sea.ic line 92

--Thread 27836 has waited at btr0sea.ic line 92 for 0 seconds the semaphore:

X-lock on RW-latch at 000001BD277CCFF8 created in file btr0sea.cc line 202

a writer (thread id 25492) has reserved it in mode exclusive

number of readers 0, waiters flag 1, lock_word: 0

Last time read locked in file btr0sea.ic line 122

Last time write locked in file G:\ade\build\sb_0-39697839-1592332179.68\

mysql-8.0.21\storage\innobase\include\btr0sea.ic line 92

--Thread 25132 has waited at btr0sea.ic line 92 for 0 seconds the semaphore:

X-lock on RW-latch at 000001BD277CCFF8 created in file btr0sea.cc line 202

a writer (thread id 25492) has reserved it in mode exclusive

number of readers 0, waiters flag 1, lock_word: 0

Last time read locked in file btr0sea.ic line 122

Last time write locked in file G:\ade\build\sb_0-39697839-1592332179.68\

mysql-8.0.21\storage\innobase\include\btr0sea.ic line 92

--Thread 22512 has waited at btr0sea.ic line 92 for 0 seconds the semaphore:

X-lock on RW-latch at 000001BD277CCFF8 created in file btr0sea.cc line 202

a writer (thread id 25492) has reserved it in mode exclusive

number of readers 0, waiters flag 1, lock_word: 0

Chapter 18 Case study: semaphores

307

Last time read locked in file btr0sea.ic line 122

Last time write locked in file G:\ade\build\sb_0-39697839-1592332179.68\

mysql-8.0.21\storage\innobase\include\btr0sea.ic line 92

--Thread 22184 has waited at btr0sea.ic line 122 for 0 seconds the semaphore:

S-lock on RW-latch at 000001BD277CCFF8 created in file btr0sea.cc line 202

a writer (thread id 25492) has reserved it in mode exclusive

number of readers 0, waiters flag 1, lock_word: 0

Last time read locked in file btr0sea.ic line 122

Last time write locked in file G:\ade\build\sb_0-39697839-1592332179.68\

mysql-8.0.21\storage\innobase\include\btr0sea.ic line 92

--Thread 32236 has waited at btr0sea.ic line 92 for 0 seconds the semaphore:

X-lock on RW-latch at 000001BD277CCFF8 created in file btr0sea.cc line 202

a writer (thread id 25492) has reserved it in mode exclusive

number of readers 0, waiters flag 1, lock_word: 0

Last time read locked in file btr0sea.ic line 122

Last time write locked in file G:\ade\build\sb_0-39697839-1592332179.68\

mysql-8.0.21\storage\innobase\include\btr0sea.ic line 92

OS WAIT ARRAY INFO: signal count 68351

RW-shared spins 9768, rounds 21093, OS waits 11109

RW-excl spins 13012, rounds 669111, OS waits 24669

RW-sx spins 16, rounds 454, OS waits 15

Spin rounds per wait: 2.16 RW-shared, 51.42 RW-excl, 28.38 RW-sx

...

In this example, all the waits are on the semaphore created in line 202 in btr0sea.

cc (the line number may differ depending on the platform and MySQL release, e.g., on

Linux, the line will be 201 for 8.0.21). If you look at the source code for MySQL 8.0.21 in

the file storage/innobase/btr/btr0sea.cc, then the code around line 202 is

 186 /** Creates and initializes the adaptive search system at a database

start.

 187 @param[in] hash_size hash table size. */

 188 void btr_search_sys_create(ulint hash_size) {

 189 /* Search System is divided into n parts.

 190 Each part controls access to distinct set of hash buckets from

 191 hash table through its own latch. */

Chapter 18 Case study: semaphores

308

 192

 193 /* Step-1: Allocate latches (1 per part). */

 194 btr_search_latches = reinterpret_cast<rw_lock_t **>(

 195 ut_malloc(sizeof(rw_lock_t *) * btr_ahi_parts, mem_key_ahi));

 196

 197 for (ulint i = 0; i < btr_ahi_parts; ++i) {

 198 btr_search_latches[i] = reinterpret_cast<rw_lock_t *>(

 199 ut_malloc(sizeof(rw_lock_t), mem_key_ahi));

 200

 201 rw_lock_create(btr_search_latch_key, btr_search_latches[i],

 202 SYNC_SEARCH_SYS);

 203 }

 ...

This is the code for the adaptive hash index, so this proves that the adaptive hash

index is where the contention is. (It also shows that lines 201 and 202 are for the same

statement, so the difference in the line numbers between Microsoft Windows and Linux

is whether the first or last line of the statement is chosen as the creation of the rw-lock.)

You can also use the mutex monitor to get statistics of which locks are the ones most

frequently experiencing waits. An example of the output of the mutex monitor from the

end of this test is

mysql> SHOW ENGINE INNODB MUTEX;

+--------+----------------------------+-------------+

| Type | Name | Status |

+--------+----------------------------+-------------+

| InnoDB | rwlock: fil0fil.cc:3206 | waits=11 |

| InnoDB | rwlock: dict0dict.cc:1035 | waits=12 |

| InnoDB | rwlock: btr0sea.cc:202 | waits=7730 |

| InnoDB | rwlock: btr0sea.cc:202 | waits=934 |

| InnoDB | rwlock: btr0sea.cc:202 | waits=5445 |

| InnoDB | rwlock: btr0sea.cc:202 | waits=889 |

| InnoDB | rwlock: btr0sea.cc:202 | waits=9076 |

| InnoDB | rwlock: btr0sea.cc:202 | waits=13608 |

| InnoDB | rwlock: btr0sea.cc:202 | waits=1050 |

Chapter 18 Case study: semaphores

309

| InnoDB | rwlock: hash0hash.cc:171 | waits=4 |

| InnoDB | sum rwlock: buf0buf.cc:778 | waits=86 |

+--------+----------------------------+-------------+

11 rows in set (0.0008 sec)

If you create the mutex monitor report with regular intervals, you can sum the waits

and group by file and line number and then monitor the difference where the waits

occur at which time. (The author of this book is not aware of any monitoring solution

that does this out of the box.) For this example, the test itself calculates the number of

waits for each file and line number which will primarily show waits for btr0sea.cc line

202 (remember the line number depends in the exact release and compiler/platform):

-- Total mutex and rw-semaphore waits during test:

+----------------+-------+

| File:Line | Waits |

+----------------+-------+

| btr0sea.cc:202 | 13368 |

+----------------+-------+

The most likely other file and line you will see is hash0hash:171 (for 8.0.21 on

Windows or line 170 on Linux for 8.0.21) which is related to InnoDB’s implementation

of hash tables. It shows that it was not a coincidence that the semaphore waits in the

InnoDB monitor output were all for btr0sea.cc line 202.

 Determining the Workload
The final step of the investigation is to determine the workload causing the contention.

This is also the most difficult task. The best is if you have a monitoring solution that

collects information about the queries that are executed and aggregates statistics for them.

With such monitoring, you can directly see what queries are executed which can help you

determine what causes the contention. If you do not have access monitoring data for the

queries executed during the time of contention, you can try to monitor the queries using

sys.session or the Performance Schema tables with statement information (threads,

events_statements_current, events_statements_history, and events_statements_

history_long). An option is also to use the statement_performance_analyzer()

procedure in the sys schema which takes two snapshots of the events_statements_

summary_by_digest table and calculates the difference and returns one or more reports

showing information about the queries executed between the two snapshots.

Chapter 18 Case study: semaphores

310

Tip the statement_performance_analyzer() procedure in the sys
schema can be used to generate a “poor man’s query analyzer” with the
queries executed between two snapshots. see https://dev.mysql.com/
doc/refman/en/sys- statement- performance- analyzer.html for the
documentation and an example.

This sounds easy, but in practice, it is not so simple. Even with good monitoring, it

may be near impossible to determine which queries are the problem. In a real-world

production system, you may have peaks at more than 100000 queries per second and

more than 10000 unique query digests each minute. Trying to find the combinations of

queries causing the contention among those makes finding a needle in a haystack seems

easy.

If you are lucky, you may be able to guess what kind of queries you are looking for

based on the contented mutexes and semaphores. In this case, the contention is on the

adaptive hash index which is exclusively used for secondary indexes. So, you know that

the queries of interest must be using secondary indexes, and the larger the number of

index lookups and index modifications a query performs, the more likely it is to be part

of the issue. In this case, the read-only query uses two secondary indexes as it can be

seen from the query plan as shown in Listing 18-3.

Listing 18-3. The query plan for the read-only query in the test

EXPLAIN

 SELECT dept_name, MIN(salary) min_salary,

 AVG(salary) AS avg_salary, MAX(salary) AS max_salary

 FROM employees.departments

 INNER JOIN employees.dept_emp USING (dept_no)

 INNER JOIN employees.salaries USING (emp_no)

 WHERE dept_emp.to_date = '9999-01-01'

 AND salaries.to_date = '9999-01-01'

 GROUP BY dept_no

 ORDER BY dept_name

Chapter 18 Case study: semaphores

https://dev.mysql.com/doc/refman/en/sys-statement-performance-analyzer.html
https://dev.mysql.com/doc/refman/en/sys-statement-performance-analyzer.html

311

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: departments

 partitions: NULL

 type: index

possible_keys: PRIMARY,dept_name

 key: PRIMARY

 key_len: 16

 ref: NULL

 rows: 9

 filtered: 100

 Extra: Using temporary; Using filesort

*************************** 2. row ***************************

 id: 1

 select_type: SIMPLE

 table: dept_emp

 partitions: NULL

 type: ref

possible_keys: PRIMARY,dept_no,idx_concurrency_book_0

 key: idx_concurrency_book_0

 key_len: 19

 ref: employees.departments.dept_no,const

 rows: 9

 filtered: 100

 Extra: Using index

*************************** 3. row ***************************

 id: 1

 select_type: SIMPLE

 table: salaries

 partitions: NULL

 type: ref

possible_keys: PRIMARY,idx_concurrency_book_2

 key: idx_concurrency_book_2

 key_len: 7

Chapter 18 Case study: semaphores

312

 ref: employees.dept_emp.emp_no,const

 rows: 1

 filtered: 100

 Extra: Using index

3 rows in set, 1 warning (0.0009 sec)

The joins on the dept_emp and salaries tables are both performed using a

secondary index, the idx_concurrency_book_0 and idx_concurrency_book_2 indexes,

respectively. Likewise, the queries executed by the read-write connection use secondary

indexes; it is left as an exercise for the reader to verify that.

With the investigation completed, you need to decide how to handle the contention.

 The Solution and Prevention
Unlike the previous case studies, there is in general no straightforward way to solve and

prevent the issue. Instead, you will need to test and verify the effect of various possible

changes to your system. For this reason, the solution and prevention sections are

combined.

• Disabling the adaptive hash index altogether

• Increasing the number of partitions

• Increasing the number of spin rounds before suspending the thread

• Splitting the workload to different replicas

These options will be discussed in the remainder of this section.

 Disabling the Adaptive Hash Index
For contention on the adaptive hash index, the most straightforward solution is to

disable the feature. Before you do so, you need to consider whether the reported

contention is really a performance issue. Remember, mutex and semaphore waits are

not by themselves a sign of problems; in fact, they are a natural part of MySQL. The spin

waits counter increments as soon as a request cannot be fulfilled immediately. If the

query only waits a few spin rounds before the request is fulfilled, it is not necessarily an

issue. One thing you can look at is the average number of spin rounds per wait and use

that to estimate how long the waits are. This is illustrated in Figure 18-3.

Chapter 18 Case study: semaphores

313

The figure shows that for exclusive locks, on average, each wait spends 80 to 100

rounds waiting. That is significant as there is a delay between each poll (the innodb_

spin_wait_delay and innodb_spin_wait_pause_multiplier options). Additionally,

by default, after 30 rounds (the innodb_sync_spin_loops option), InnoDB suspends

the thread to make it become available for other purposes which makes waking up the

query again more expensive. For shared locks, the average is less than five and thus more

manageable.

You should also consider how often the adaptive hash index can be used to find

the rows and save a B-tree search. Hash index lookups are fast compared with B-tree

searches, so the more searches that can be fulfilled by the adaptive hash index, the more

overhead it justifies. InnoDB has two metrics that track how frequently the hash index is

Figure 18-3. The average spin rounds per wait for shared and exclusive rw- locks

Chapter 18 Case study: semaphores

314

used and how frequently the B-tree must be accessed. Additionally, there are six other

metrics related to the adaptive hash index, but these are disabled by default (the values

include work done before this test, so they will vary):

mysql> SELECT variable_name, variable_value AS value, enabled

 FROM sys.metrics

 WHERE type = 'InnoDB Metrics - adaptive_hash_index'

 ORDER BY variable_name;

+--+----------+---------+

| variable_name | value | enabled |

+--+----------+---------+

| adaptive_hash_pages_added | 0 | NO |

| adaptive_hash_pages_removed | 0 | NO |

| adaptive_hash_rows_added | 0 | NO |

| adaptive_hash_rows_deleted_no_hash_entry | 0 | NO |

| adaptive_hash_rows_removed | 0 | NO |

| adaptive_hash_rows_updated | 0 | NO |

| adaptive_hash_searches | 51488882 | YES |

| adaptive_hash_searches_btree | 10904682 | YES |

+--+----------+---------+

8 rows in set (0.0097 sec)

This shows that more than 51 million searches (adaptive_hash_searches) have been

fulfilled by the hash index and less than 11 million searches required using the B- tree.

That gives a hit rate of

Hit Rate
adaptive hash searches

adaptive hash searches
= *

+
100%

_ _

_ _ aadaptive hash searches btree_ _ _
. %= 82 5

A hit rate of 82.5% may seem good, but it is likely (depending on the workload)

on the low side for the adaptive hash index to be beneficial. Remember that the hash

index also takes up memory in the buffer pool. If you disable the adaptive hash index,

that memory can be used for caching B-tree indexes instead. You also need to take into

consideration how long the metrics cover and whether there are fluctuations in the

usefulness of the hash index. For the latter, a graph in your monitoring software is a good

way to look at the data over time. Figure 18-4 shows an example based on the metrics

collected during this test.

Chapter 18 Case study: semaphores

315

Here you can see that initially, the adaptive hash index is effective with the majority

of searches being fulfilled using the hash index. However, 6 seconds into the test, the

adaptive_hash_searches metric starts to plummet, and after the 9-second mark and

until near the end of the test, it does not get above 250 matches per second. You can also

see that the sum of the two is much lower during that period than in the start which may

be due to contention causing the overall query performance to suffer. However, you will

need to confirm whether that is the case using other sources; this is left as an exercise.

Alternative, you can plot the hit rate directly as it is shown in Figure 18-5.

Figure 18-4. The adaptive hash index search metrics during the test

Chapter 18 Case study: semaphores

316

This clearly shows that initially, the adaptive hash index is quite effective but then

becomes useless. Based on this, it seems likely that it is worth disabling the adaptive

hash index which you can do by setting innodb_adaptive_hash_index to OFF or 0, for

example

SET GLOBAL innodb_adaptive_hash_index = OFF;

Query OK, 0 rows affected (0.1182 sec)

While you can test disabling the hash index dynamically, do be aware that as soon

as you do so, the hash index in the buffer pool is purged, so if you later re-enable the

feature, you will need for the hashes to be rebuilt. For large instances, the adaptive hash

index may use 25 GiB or more memory, so it will take a while to rebuild. Thus, when

you disable the adaptive hash index in a production system, you may want to keep a

replica ready with it enabled, so you can fail over to the replica should the disablement of

innodb_adaptive_hash_index turn out to cause a performance regression.

Figure 18-5. The adaptive hash index hit rate during the test

Chapter 18 Case study: semaphores

317

Tip ultimately, for semaphore contention issues, you will need to verify the effect
of your changes using benchmarks or testing in a production-like environment or
by having replicas with different settings. While some estimates of the effect can
be made like in this discussion, the interactions between the involved parts are
complex, and you cannot be sure of the overall effect before you measure it.

While disabling the adaptive hash index is a straightforward solution, there are other

changes you can consider that may allow you to continue using the adaptive hash index

at least partially.

 Increase the Number of Hash Index Parts
If the contention is caused by too many connections hitting the same hash partition,

then an option is to increase the number of parts the adaptive hash index is split into.

This is done with the innodb_adaptive_hash_index_parts option. There is no direct

way to determine whether increasing the number of hash index parts will help, though

you can take a look at INSERT BUFFER AND ADAPTIVE HASH INDEX section in the InnoDB

monitor output and see the size and number of buffers in each part, for example

mysql> SHOW ENGINE INNODB STATUS\G

...

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 13, seg size 15, 0 merges

merged operations:

 insert 0, delete mark 0, delete 0

discarded operations:

 insert 0, delete mark 0, delete 0

Hash table size 34679, node heap has 1 buffer(s)

Hash table size 34679, node heap has 3880 buffer(s)

Hash table size 34679, node heap has 1 buffer(s)

Hash table size 34679, node heap has 1 buffer(s)

Hash table size 34679, node heap has 1 buffer(s)

Chapter 18 Case study: semaphores

318

Hash table size 34679, node heap has 1 buffer(s)

Hash table size 34679, node heap has 1 buffer(s)

Hash table size 34679, node heap has 1 buffer(s)

0.00 hash searches/s, 0.00 non-hash searches/s

...

This output is from the end of the test, and you can see that it is mostly one of the

parts that is in use (which part may differ for you). So, in this case, it likely does not help

to add more hash index parts. In a more realistic production usage with many indexes,

you are more likely to benefit from more parts.

 Other Solutions
It was discussed earlier in this section that it was a problem so many of the spin waits

were converted into OS waits. Particularly if you do not use all of your CPUs, you can

consider increasing the value of the innodb_sync_spin_loops option to allow InnoDB to

keep polling for the rw-lock to become available. This can reduce the number of context

switches and the overall wait time.

Finally, you can consider dividing your queries into those that benefit from the

adaptive hash index and those that do not and direct each group of queries to separate

replicas. That way, you can execute the queries that benefit from the adaptive hash index

on a replica where the feature is enabled and those that do not benefit on a replica with it

disabled. This obviously is mostly a solution for read-only tasks.

 Summary
This case study has investigated an example of semaphore contention on the adaptive

hash index. The symptoms include an elevated number of waits reported by the innodb_

rwlock_% InnoDB metrics and the SEMAPHORES section of the InnoDB monitor caused by

too many queries requiring conflicting access to the same latches.

The setup for this case study is more involved compared to most of the previous case

studies and is easiest reproduced using the concurrency_book module for MySQL Shell.

The workload for this chapter prompts for various settings for the test, so you can try and

adapt the test for your system.

Chapter 18 Case study: semaphores

319

The investigation started out using the innodb_rwlock_% metrics to determine when

the contention is a problem. You can both look at the raw metrics and the spin rounds

per spin wait. Then the InnoDB monitor and mutex monitor were used to determine

where the contention is, in this case, on the adaptive hash index. Finally, it was discussed

how you may be able to determine the workload causing the contention.

The solution is in general not simple and deterministic when working with mutex

and semaphore contention. For the adaptive hash index, the most straightforward

option is to disable it, but before you do that, you need to consider the overall

effectiveness of the feature including the hit rate. An alternative is to split the hash

index into more parts; however, that only works if the contention affects several of your

existing partitions. Other solutions include increasing the number of spin loops allowed

to reduce how often InnoDB suspends the polling and to use multiple read replicas with

different configurations.

That concludes the journey through the world of MySQL concurrency with focus on

locks and transactions. Remember that practice makes perfect, and this is particularly

true with the topics discussed in this book. The remainder of the book consists of two

appendixes of which Appendix A contains various references for Performance Schema

tables, the InnoDB monitor, and more. Appendix B is a reference for the concurrency_

book module for MySQL Shell.

Good luck with your continued MySQL concurrency performance journey.

Chapter 18 Case study: semaphores

321
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6

APPENDIX A

 References
MySQL includes several views and tables in the Performance Schema, sys schema,

and Information Schema that provide information that you can use when investigating

issues. This appendix includes a quick reference to the resources most useful in

connection with this book. For the object and lock types in the performance_schema.

metadata_locks table, lists of possible values are also included. Finally, there is a brief

description of each of the sections of the InnoDB monitor.

Tip MySQL Workbench includes several performance reports that are based
on the sys schema views. This allows you to use a graphical user interface to
obtain the information discussed here. The interface also allows you to change the
ordering of the rows.

 Tables and Views
The Performance Schema is the primary resource for information related to locks and

transactions. Additionally, the Information Schema provides a couple of views, and the

sys schema makes the information available as reports.

Tip Most of the sys schema views are also available with x$ prefixed, for
example, x$statement_analysis. The views with x$ prefixed do not add the
formatting making them better if you want to add additional filters on the formatted
columns, change the ordering, or similar.

https://doi.org/10.1007/978-1-4842-6652-6#DOI

322

This section first lists the resources with lock information, then the possible values of

the OBJECT_TYPE and LOCK_TYPE columns of the performance_schema.metadata_locks

table, and then resources with transaction, statement, waits, table and file I/O, and error

information. Finally, the tables and views with the status variables and InnoDB metrics

are covered.

 Lock Information
The information is available through four Performance Schema tables:

• data_locks: This table contains details of table and records locks at

the InnoDB level. It shows all locks currently held or are pending.

• data_lock_waits: Like the data_locks table, it shows locks related

to InnoDB, but only those waiting to be granted with information on

which threads is blocking the request.

• metadata_locks: This table contains information about user-level

locks, metadata locks, and similar. To record information, the wait/

lock/metadata/sql/mdl Performance Schema instrument must

be enabled (it is enabled by default in MySQL 8). The OBJECT_TYPE

column shows which kind of lock is held, and the LOCK_TYPE column

shows the access level.

• table_handles: This table holds information about which table

locks are currently in effect. The wait/lock/table/sql/handler

Performance Schema instrument must be enabled for data to be

recorded (this is the default). This table is less frequently used than

the other tables.

The sys schema includes two invaluable views showing details of ongoing lock waits.

The views are

• innodb_lock_waits: This view shows ongoing InnoDB row lock

waits. It uses the data_locks and data_lock_waits tables.

• schema_table_lock_waits: This view shows ongoing metadata and

user lock waits. It uses the metadata_locks table.

APPENDIX A REfERENcES

323

 Metadata Object Types
The OBJECT_TYPE column shows which kind of lock is held with the possible values

defined in sql/mdl.h in the source code.1 Table A-1 summarizes the possible values of

the OBJECT_TYPE column in alphabetical order with a brief explanation of the locks each

value represents.

The most commonly encountered object types are GLOBAL and TABLE.

1 https://github.com/mysql/mysql-server/blob/8.0/sql/mdl.h line 356 and onward in 8.0.21

Table A-1. Object types in the performance_schema.metadata_locks table

Object Type Description

ACL_CACHE for the access control list (AcL) cache.

BACKUP_LOCK for the backup lock.

CHECK_CONSTRAINT for the names of CHECK constraints.

COLUMN_STATISTICS for histograms and other column statistics.

COMMIT for blocking commits. It is related to the global read lock.

EVENT for stored events.

FOREIGN_KEY for the foreign key names.

FUNCTION for stored functions.

GLOBAL for the global read lock (triggered by FLUSH TABLES WITH READ LOCK).

LOCKING_SERVICE for locks acquired using the locking service interface.

PROCEDURE for stored procedures.

RESOURCE_GROUPS for the resource groups.

SCHEMA for schema/databases. These are similar to the metadata locks for tables

except they are for a schema.

SRID for the spatial reference systems (SRIDs).

TABLE for tables and views. This includes what is called metadata locks in this book.

TABLESPACE for tablespaces.

TRIGGER for triggers (on tables).

USER_LEVEL_LOCK for user-level locks.

APPENDIX A REfERENcES

https://github.com/mysql/mysql-server/blob/8.0/sql/mdl.h

324

 Metadata Lock Types
The LOCK_TYPE column contains the access level of the lock. This is a variation of shared

and exclusive combined with modifiers such as intention and the priority. Table A-2

summarizes the possible value.2

2 https://github.com/mysql/mysql-server/blob/8.0/sql/mdl.h line 181 and onward in 8.0.21

Table A-2. The lock types in the performance_schema.metadata_locks table

Lock Type Description

INTENTION_EXCLUSIVE An intention exclusive lock that can later be upgraded to an exclusive

lock. This is also used when accessing the dictionary cache.

SHARED for shared access to only the metadata of the object. for example,

used with stored procedures and when preparing prepared statements.

SHARED_HIGH_PRIO A high-priority shared lock which is used when only accessing the

metadata, for example, when populating the Information Schema view

with metadata for the tables.

SHARED_READ A shared lock for cases where it is intended to read the data of the

object.

SHARED_WRITE A shared lock on the metadata for cases where the intention is to

modify the data of the object.

SHARED_WRITE_LOW_

PRIO

The same as SHARED_WRITE but for statements that use the LOW_

PRIORITY clause. This is not supported by InnoDB.

SHARED_UPGRADABLE A shared lock that allows concurrent read/write of the table data. It can

later be upgraded to lock types preventing data changes. It is used by

the first phase of ALTER TABLE statements.

SHARED_READ_ONLY This lock type is used with LOCK TABLES … READ to take a shared

lock while preventing modification of the table’s metadata and data.

SHARED_NO_WRITE Another upgradable shared lock which blocks writes to the data. It is

also used with the first phase of ALTER TABLE statements.

(continued)

APPENDIX A REfERENcES

https://github.com/mysql/mysql-server/blob/8.0/sql/mdl.h

325

Lock Type Description

SHARED_NO_READ_WRITE An upgradable lock holding a shared lock on the metadata but

prevents both reads and writes of the table data. This is used by

LOCK TABLES ... WRITE.

EXCLUSIVE No other access to neither the metadata nor table data is allowed. This

is used with CREATE TABLE, DROP TABLE, and RENAME TABLE

statements as well as some phases of other DDL statements.

 Transaction Information
The transaction tables can be used to find information about individual transactions

or aggregated data. The Performance Schema tables with information about individual

transactions as well as the INNODB_TRX view in the Information Schema are

• events_transactions_current: Transactions that are ongoing as

well as the latest transaction for threads that are still connected but

that have not yet started a new transaction.

• events_transactions_history: The last ten transactions (can be

changed with the performance_schema_events_transactions_

history_size) for each existing thread.

• events_transactions_history_long: The last 10000 transactions

(the performance_schema_events_transactions_history_long_

size option) for the instance. It also includes transactions for

disconnected threads. The consumer for this table is disabled by

default.

• INNODB_TRX: This Information Schema view includes details for

InnoDB transactions and is the best resource for studying ongoing

InnoDB transactions.

Table A-2. (continued)

APPENDIX A REfERENcES

326

There are five transaction summary tables grouping the data globally or by account,

host, thread, or user. The tables are

• events_transactions_summary_global_by_event_name:
All transactions aggregated. There is only a single row in this table.

• events_transactions_summary_by_account_by_event_name:
The transactions grouped by username and hostname.

• events_transactions_summary_by_host_by_event_name:
The transactions grouped by hostname of the account.

• events_transactions_summary_by_thread_by_event_name:
The transactions grouped by thread. Only currently existing threads

are included.

• events_transactions_summary_by_user_by_event_name:
The events grouped by the username part of the account.

 Statement Information
The statement tables follow the same pattern as the transaction tables with three tables

with information about individual events and several summary tables with aggregate

data. Additionally, there is the threads table. The tables for individual statements are

• events_statements_current: The statements currently executing

or for idle connections the latest executed query. When executing

stored programs, there may be more than one row per connection.

• events_statements_history: The last statements for each

connection. The number of statements per connection is capped at

performance_schema_events_statements_history_size (defaults

to 10). The statements for a connection are removed when the

connection is closed.

• events_statements_history_long: The latest queries for the

instance irrespective of which connection executed it. This table also

includes statements from connections that have been closed. The

consumer for this table is disabled by default. The number of rows is

capped at performance_schema_events_statements_history_long_

size (defaults to 10000).

APPENDIX A REfERENcES

327

• threads: Information about all current threads in the instance, both

background and foreground threads. You can use this table instead

of the SHOW PROCESSLIST command. In addition to the process

list information, there are columns showing whether the thread is

instrumented, the operating system thread id, and more.

The statement summary tables group the data by the statement digest, event name,

user, etc. The tables are

• events_statements_summary_by_digest: The statement statistics

grouped by the default schema and digest.

• events_statements_summary_by_account_by_event_name:
The statement statistics grouped by the account and event name. The

event name shows what kind of statement is executed, for example,

statement/sql/select for a SELECT statement executed directly (not

executed through a stored program).

• events_statements_summary_by_host_by_event_name: The statement

statistics grouped by the hostname of the account and the event name.

• events_statements_summary_by_program: The statement statistics

grouped by the stored program (event, function, procedure, table, or

trigger) that executed the statement. This is useful to find the stored

programs that perform the most work.

• events_statements_summary_by_thread_by_event_name:
The statement statistics grouped by thread and event name. Only

threads currently connected are included.

• events_statements_summary_by_user_by_event_name: The statement

statistics grouped by the username of the account and the event name.

• events_statements_summary_global_by_event_name: The statement

statistics grouped by the event name.

• events_statements_histogram_by_digest: Histogram statistics

grouped by the default schema and digest.

APPENDIX A REfERENcES

328

• events_statements_histogram_global: Histogram statistics where

all queries are aggregated in one histogram.

• prepared_statements_instances: Statistics for prepared statements

with one row per prepared statement (the same statement prepared

by two threads count as two unique prepared statements).

Of these tables, the events_statements_summary_by_digest is the most used. One

important thing to note is that queries executed as prepared statements are not included

in the statement tables, and instead the prepared_statements_instances table must be

used to get information about them.

The sys schema includes a view that serves as an advanced process list as well as

views returning statements filtered by criteria such as whether they perform full tables

scans, performs sorting, etc. The views are

• session: This view returns an advanced process list based on

the threads and events_statements_current tables with some

additional information from other Performance Schema tables. The

view includes the current statement for active connections and the

last executed statement for idle connections. The rows are returned

in descending order according to the process list time and the

duration of the previous statement. The session view is particularly

useful to understand what is happening right now.

• statement_analysis: This view is a formatted version of the events_

statements_summary_by_digest table ordered by the total latency in

descending order.

• statements_with_errors_or_warnings: This view returns the

statements that cause errors or warnings. The rows are ordered

in descending order by the number of errors and then number of

warnings.

• statements_with_full_table_scans: This view returns the

statements that include a full table scan. The rows are first ordered by

the percentage of times no index is used and then by the total latency,

both in descending order.

APPENDIX A REfERENcES

329

• statements_with_runtimes_in_95th_percentile: This view returns

the statements that are in the 95th percentile of all queries in the

events_statements_summary_by_digest table. The rows are ordered

by the average latency in descending order.

• statements_with_sorting: This view returns the statements that

sort the rows in its result. The rows are ordered by the total latency in

descending order.

• statements_with_temp_tables: This view returns the statements

that use internal temporary tables. The rows are ordered in

descending order by the number of internal temporary tables on disk

and internal temporary tables in memory.

In addition to the views listed here, there is also the statement_performance_

analyzer() procedure which takes two snapshots of the events_statements_summary_

by_digest table and calculates the difference and returns one or more reports showing

information about the queries executed between the two snapshots.

 Wait Information
The wait tables are not used as frequently as the statement tables, and most wait events

are disabled by default. Otherwise, the tables follow the same pattern as for transactions

and statements. The tables with information about individual wait events are

• events_waits_current: The current ongoing or last completed wait

events for each existing thread. This requires the events_waits_

current consumer to be enabled.

• events_waits_history: The last ten (the performance_schema_

events_waits_history_size option) wait events for each existing

thread. This requires the events_waits_history consumer to be

enabled in addition to the events_waits_current consumer.

• events_waits_history_long: The last 10,000 (the performance_

schema_events_waits_history_long_size option) events globally,

including for threads that no longer exist. This requires the events_

waits_history_long consumer to be enabled in addition to the

events_waits_current consumer.

APPENDIX A REfERENcES

330

Due to the sheer number of wait events that are executed, typically, the summary

tables are the most useful for wait events. These are

• events_waits_summary_by_account_by_event_name: The wait

events grouped by the username and hostname of the accounts (also

called actors in the Performance Schema).

• events_waits_summary_by_host_by_event_name: The wait events

grouped by the hostname of the account triggering the event and

event name.

• events_waits_summary_by_instance: The wait events grouped by

the event name as well as the memory address (OBJECT_INSTANCE_

BEGIN) of the object. This is useful for events with more than one

instance to monitor whether the waits are evenly distributed among

the instances. An example is the table cache mutex (wait/synch/

mutex/sql/LOCK_table_cache) which has one object per table cache

instance (table_open_cache_instances).

• events_waits_summary_by_thread_by_event_name: The wait events

for currently existing threads grouped by the thread id and event

name.

• events_waits_summary_by_user_by_event_name: The wait events

grouped by the username of the account triggering the event and

event name.

• events_waits_summary_global_by_event_name: The wait events

grouped by the event names. This table is useful to get an overview of

how much time is spent waiting for a given type of event.

 Table I/O Information
When studying concurrency issues, it can be useful to determine which are the most

used tables. There are two tables in the Performance Schema that provides this

information:

• table_io_waits_summary_by_table: The aggregate information for

the table with details of read, write, fetch, insert, and update I/O.

APPENDIX A REfERENcES

331

• table_io_waits_summary_by_index_usage: The same information

as for the table_io_waits_summary_by_table table except the

statistics are per index or lack thereof.

The sys schema views for table I/O can be used to find information about the usage

of tables and indexes. This includes finding indexes that are not used and tables where

full table scans are executed. The views that base their information on the table I/O all

have schema_ as the prefix for the name. The views are

• schema_index_statistics: This view includes all the rows of the

table_io_waits_summary_by_index_usage table where the index

name is not NULL. The rows are ordered by the total latency in

descending order. The view shows you how much each index is used

for selecting, inserting, updating, and deleting data.

• schema_table_statistics: This view combines data from the table_

io_waits_summary_by_table and file_summary_by_instance tables

to return both the table I/O and the file I/O related to the table. The

file I/O statistics are only included for tables in their own tablespace.

The rows are ordered by the total table I/O latency in descending

order.

• schema_table_statistics_with_buffer: This view is the same

as the schema_table_statistics view except that is also includes

buffer pool usage information from the INNODB_BUFFER_PAGE

Information Schema view. Be aware that querying the innodb_

buffer_page view can have a significant overhead and is best used

on test systems.

• schema_tables_with_full_table_scans: This view queries the

table_io_waits_summary_by_index_usage table for rows where

the index name is NULL – that is, where an index was not used – and

includes the rows where the read count is greater than 0. These are

the tables where there are rows that are read without using an index –

that is, through a full table scan. The rows are ordered by the total

number of rows read in descending order.

APPENDIX A REfERENcES

332

• schema_unused_indexes: This view also uses the table_io_waits_

summary_by_index_usage table but includes rows where no rows

have been read for an index, and that index is not a primary key or a

unique index. Tables in the mysql schema are excluded as you should

not change the definition of any of those. The tables are ordered

alphabetically according to the schema and table names.

 File I/O Information
When the workload hits the disk, it can quickly become a bottleneck given that disk I/O

is slower than memory I/O. It is thus useful to track which files are seeing the most file

I/O. The tables and views are best used to determine what is causing the I/O once you

have determined that the disk I/O is a bottleneck. You can then work backward to find

the tables involved. From there you may determine if you can optimize queries using the

tables or that you need to increase the I/O capacity.

The Performance Schema tables with file I/O information are

• events_waits_summary_global_by_event_name: This is a summary

table grouped by the event names. By querying event names starting

with wait/io/file/, you can get I/O statistics grouped by the type

of I/O. For example, I/O caused by reading and writing the binary

log files uses a single event (wait/io/file/sql/binlog). Note that

events set to wait/io/table/sql/handler correspond to table I/O;

including the table I/O allows you to easily compare the time spent

on file I/O with the time spent on table I/O.

• file_summary_by_event_name: This is similar to the events_waits_

summary_global_by_event_name table but just including file I/O and

with the events split into reads, writes, and miscellaneous.

• file_summary_by_instance: This is a summary table grouped by

the actual files and with the events divided into reads, writes, and

miscellaneous. For example, for the binary logs, there is one row per

binary log file.

APPENDIX A REfERENcES

333

The sys schema file I/O views include

• io_by_thread_by_latency: This view uses the events_waits_

summary_by_thread_by_event_name table to return the file I/O

statistics grouped by the thread with the rows ordered by the total

latency in descending order. The threads include the background

threads which are the ones causing a large part of the write I/O.

• io_global_by_file_by_bytes: This view uses the file_summary_

by_instance table to return the number of read and write operations

and the amount of I/O in bytes for each file. The rows are ordered by

the total amount of read plus write I/O in bytes in descending order.

• io_global_by_file_by_latency: This view is the same as the io_

global_by_file_by_bytes view except it reports the I/O latencies.

• io_global_by_wait_by_bytes: This view is similar to the io_global_

by_file_by_bytes view except it groups by the I/O event names

instead of file names and it uses the file_summary_by_event_name

table.

• io_global_by_wait_by_latency: This view is the same as the io_

global_by_wait_by_bytes view except it reports the I/O latencies.

 Error Information
Unlike transactions, statements, and waits, error events are only exposed through

summary tables with aggregate data. The tables are

• events_errors_summary_by_account_by_error: The errors grouped

by the account (username and hostname) and error number.

• events_errors_summary_by_host_by_error: The errors grouped by

hostname and error number.

• events_errors_summary_by_thread_by_error: The errors grouped

by thread and error number. Only threads that still exists are

included.

APPENDIX A REfERENcES

334

• events_errors_summary_by_user_by_error: The errors grouped by

username and error number.

• events_errors_summary_global_by_error: The errors grouped by

error number. This table is also useful to map error numbers to the

error name and SQL state.

 Status Variables and InnoDB Metrics
The session and global status variables as well as the InnoDB metrics are useful to get a

high-level overview of the activity in MySQL. The tables and view are

• performance_schema.session_status: The status variables for the

session querying the table. This is mostly equivalent to SHOW SESSION

STATUS.

• performance_schema.global_status: The global status variables.

This is mostly equivalent to SHOW GLOBAL STATUS.

• information_schema.INNODB_METRICS: InnoDB-specific metrics

similar to the global status variables.

• sys.metrics: A view that combines the global status variables and

the InnoDB metrics plus a few other metrics.

 InnoDB Monitor Sections
The InnoDB monitor report is created with the SHOW ENGINE INNODB STATUS statement.

Alternatively, it can be written to the stderr (usually redirected to the error log) every 15

seconds by enabling the innodb_status_output option. The report itself is divided into

several sections, including

• BACKGROUND THREAD: The work done by the main background thread.

• SEMAPHORES: Semaphore statistics. The section is most important in

cases where contention causes long semaphore waits in which case

the section can be used to get information about the locks and who

holds them.

APPENDIX A REfERENcES

335

• LATEST FOREIGN KEY ERROR: If a foreign key error has been

encountered, this section includes details of the error. Otherwise, the

section is omitted.

• LATEST DETECTED DEADLOCK: If a deadlock has occurred, this section

includes details of the two transactions and the locks that caused the

deadlock. Otherwise, the section is omitted.

• TRANSACTIONS: Information about the InnoDB transactions. Only

transactions with at least one exclusive lock on InnoDB tables are

included. If the innodb_status_output_locks option is enabled, the

locks held for each transaction are listed; otherwise, it is just locks

involved in lock waits. It is in general better to use the information_

schema.INNODB_TRX view to query the transaction information and

for lock information to use the performance_schema.data_locks and

performance_schema.data_lock_waits tables.

• FILE I/O: Information about the I/O threads used by InnoDB including

the insert buffer thread, log thread, read threads, and write threads.

• INSERT BUFFER AND ADAPTIVE HASH INDEX: Information about the

change buffer (this was formerly called the insert buffer) and the

adaptive hash index.

• LOG: Information about the redo log.

• BUFFER POOL AND MEMORY: Information about the InnoDB buffer

pool. This information is better obtained from the information_

schema.INNODB_BUFFER_POOL_STATS view.

• INDIVIDUAL BUFFER POOL INFO: If innodb_buffer_pool_instances

is greater than 1, this section includes information about the

individual buffer pool instances with the same information as for the

global summary in the previous section. Otherwise, the section is

omitted. This information is better obtained from the information_

schema.INNODB_BUFFER_POOL_STATS view.

• ROW OPERATIONS: This section shows various information about

InnoDB including the current activity and what the main thread is.

The sections present in the report depend on the InnoDB configuration and what

has happened before the report is generated.

APPENDIX A REfERENcES

337
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6

 APPENDIX B

MySQL Shell Module
Several of the examples in this book can be reproduced using the concurrency_book.

generate MySQL Shell module that is available from this book’s GitHub repository. The

installation and basic usage instructions are available in Chapter 1 (but are also included

here for completeness). Additionally, this appendix covers the structure of the module

and provides instructions on how to add new test cases.

 Prerequisites
The most important requirement to use the MySQL Shell module provided with this

book is that you are using MySQL Shell 8.0.20 or later. This is a strict requirement as the

module primarily uses the shell.open_session() method to create the connections

needed for the test cases. This method was only introduced in release 8.0.20. The

advantage of shell.open_session() over the mysql.get_classic_session() and

mysqlx.get_session() is that open_session() works transparently with both the classic

MySQL protocol and the new X protocol.

If you for some reason are stuck with an older version of MySQL Shell, you can

update the test cases to include the protocol setting (see Defining Workloads later in

this appendix) to explicitly specify which protocol to use.

It is also required that a connection already exists from MySQL Shell to MySQL

Server as the module uses the URI of that connection when creating the additional

connections required for the example.

The examples have been tested with MySQL Server 8.0.21; however, most of the

examples will work with older releases, and some even with MySQL 5.7. That said, it is

recommended to use MySQL Server 8.0.21 or later.

https://doi.org/10.1007/978-1-4842-6652-6#DOI

338

 Installation
To use the module, you need to download the files in the concurrency_book directory

from this book’s GitHub repository (the link can be found on the book’s home page at

www.apress.com/gp/book/9781484266519). The easiest is to clone the repository or to

download the ZIP file with all the files using the menu shown in Figure B-1.

Click on the clipboard icon to copy the URL used to clone the repository using

the Git software of your system, or use the Download ZIP link to download a ZIP file

of the repository. You are free to choose any path as the location of the files as long

as the structure below the concurrency_book directory is kept. For this discussion,

it is assumed you have cloned the repository or unzipped the file to C:\Book\mysql-

concurrency, so the generate.py file is in the directory C:\Book\mysql-concurrency\

concurrency_book\.

To be able to import the module in MySQL Shell, open or create the mysqlshrc.py

file. MySQL Shell searches in four places for the file. On Microsoft Windows, the paths

are in the order they are searched:

 1. %PROGRAMDATA%\MySQL\mysqlsh\

 2. %MYSQLSH_HOME%\shared\mysqlsh\

 3. <mysqlsh binary path>\

 4. %APPDATA%\MySQL\mysqlsh\

Figure B-1. The GitHub menu for cloning or downloading the repository

APPENDIX B MySQL ShELL MoDuLE

http://www.apress.com/gp/book/9781484266519

339

On Linux and Unix

 1. /etc/mysql/mysqlsh/

 2. $MYSQLSH_HOME/shared/mysqlsh/

 3. <mysqlsh binary path>/

 4. $HOME/.mysqlsh/

All four paths are always searched, and if the file is found in multiple locations, each

file will be executed. This means that the last found file takes precedence if the files affect

the same variables. If you make changes meant for you personally, the best place to

make the changes is in the fourth location. The path in step 4 can be overridden with the

MYSQLSH_USER_CONFIG_HOME environment variable.

You need to ensure the mysqlshrc.py file adds the directory with the module to

the Python search path, and optionally you can add an import statement to make the

module available when you start MySQL Shell. An example of the mysqlshrc.py file is

import sys

sys.path.append('C:\\Book\\mysql-concurrency')

import concurrency_book.generate

The double backslashes are for Windows; on Linux and Unix, you do not need to

escape the slashes that separate the path elements. If you do not include the import in

the mysqlshrc.py file, you will need to execute it in MySQL Shell before you can use the

module.

 The help() and show() Methods
The module includes two methods that return information on how to use the module.

First is the help()method which provides information on how to use the module as

shown in Listing B-1.

APPENDIX B MySQL ShELL MoDuLE

340

Listing B-1. Obtaining help for the concurrency_book.generate module

mysql-py> concurrency_book.generate.help()

The following actions are supported:

====================================

* help()

 Display this help.

* load(schema_name=None)

 Load a schema. Optionally takes the name of the schema to be

 loaded. If no schema name or an invalid is given, you

 will be prompted to select one.

* show()

 List the available workloads. The function takes no arguments.

* run(workload_name=None)

 Execute a workload. Optionally the name of the workload can be

 specified. If no workload name or an invalid is given, you

 will be prompted to select one. You will also be required to

 enter the password.

The two main methods are load() and run(). The load() method can be used to

load the world, sakila, and employees sample databases, while the run() method is

used to execute one of the workloads.

There is also the show() method which lists the workloads that the run() method

can execute and the schemas that the load() method can load. The use of the show()

method is demonstrated in Listing B-2.

Listing B-2. Using the show() method to list tasks for run() and load()

mysql-py> concurrency_book.generate.show()

Available workloads:

====================

 # Name Description

 1 Listing 2-1 Example use of the metadata_locks table

 2 Listing 2-2 Example of using the table_handles table

APPENDIX B MySQL ShELL MoDuLE

341

 3 Listing 2-3 Using the data_locks table

 4 Listing 2-4 Example of a lock error in the statement tables

 5 Listing 2-5 Lock metrics

 6 Listing 2-6 Using the INNODB_METRICS view

 7 Listing 2-7 An example of creating a deadlock

 8 Listing 3-1 Example transactions

 9 Listing 3-5 InnoDB metrics related to transactions

10 Listing 3-6 Using the sys.metrics view to get the transaction

metrics

11 Listing 4-1 Example transactions

12 Listing 4-5 The events_transactions_summary_global_by_event_

name table

13 Listing 5-1 Example of obtaining a shared lock

14 Listing 5-2 Example of obtaining exclusive locks

15 Listing 6-1 A deadlock for user-level locks

16 Listing 6-3 Example of waiting for a flush lock

17 Listing 6-4 Example of waiting for table metadata lock

18 Listing 6-7 Using explicit table locks

19 Listing 6-8 Example of an InnoDB intention shared lock

20 Listing 6-9 Example of a conflict for the backup lock

21 Listing 6-10 Example output of the log_status table

22 Listing 7-1 Example of InnoDB record locks

23 Listing 7-2 Example of predicate/page locks

24 Listing 7-3 Example of an insert intention lock

25 Listing 7-4 Example of synchronization waits

26 Listing 8-1 Lock wait timeout for table lock request

27 Listing 8-2 Example of an InnoDB lock wait timeout

28 Listing 8-3 Example of a deadlock

29 Listing 8-4 A single row deadlock

30 Listing 9-1 Record locks without an index on the Name column

31 Listing 9-2 Record locks with an index on the Name column

32 Listing 9-3 The locks held in the REPEATABLE READ transaction

isolation level

33 Listing 9-4 The locks held in the READ-COMMITTED transaction

isolation level

34 Listing 10-1 Updating row by non-unique secondary index

APPENDIX B MySQL ShELL MoDuLE

342

35 Listing 10-2 Updating row by the primary index

36 Listing 10-3 Updating rows in descending order by ascending

index

37 Listing 10-4 Updating rows in descending order by descending

index

38 Listing 10-5 The different between non-unique and unique

secondary indexes

39 Listing 10-8 Updating a row in a table with foreign keys

relationships

40 Listing 10-11 Performing DDL on a table with foreign key

relations

41 Listing 12-1 Read locking in the SERIALIZABLE transaction

isolation level

42 Listing 12-2 Locking in the SERIALIZABLE transaction isolation

level

43 Listing 12-3 Read locking in the REPEATABLE READ transaction

isolation level

44 Listing 12-4 Locking in the REPEATABLE READ transaction

isolation level

45 Listing 12-5 Consistent reads mixed with DML

46 Listing 12-6 Locking in the READ COMMITTED transaction

isolation level

47 Listing 12-7 READ COMMITTED Semi-consistent reads

48 Listing 13-1 Triggering flush lock contention

49 Listing 14-1 Triggering metadata lock contention

50 Listing 15-2 Triggering InnoDB record lock contention

51 Listing 16-1 Triggering an InnoDB deadlock

52 Listing 17-1 Locks and foreign keys

53 Listing 18-1 Semaphore Waits

54 Listing B-5 Example demonstrating the workload syntax

APPENDIX B MySQL ShELL MoDuLE

343

Available Schema load jobs:

===========================

 # Name Description

--

 1 employees The employee database

 2 employees partitioned The employee database with partitions

 3 sakila The sakila database

 4 world The world database

The workloads are named after the code listings in the book, for example, the

workload named “Listing 6-1” implements the example in Listing 6-1.

 Loading Test Data
The concurrency_book.generate module supports loading the employees, sakila,

and world example databases into your MySQL instance. For the employees database,

you can optionally choose a version with partitions. The world database is the most

important for this book followed by the sakila database. The employees database is only

used for the case study in Chapter 18. Each of the three schemas is described in more

detail in Chapter 1.

Note If the schema exists, it will be dropped as part of the load job. This
effectively means that load() resets the schema.

You load a schema with the load() method which optionally takes the name of

the schema you want to load. If you do not provide a schema name, then you will be

prompted. Listing B-3 shows an example of loading the world schema.

APPENDIX B MySQL ShELL MoDuLE

344

Listing B-3. Loading the world schema

mysql-py> concurrency_book.generate.load()

Available Schema load jobs:

===========================

 # Name Description

--

 1 employees The employee database

 2 employees partitioned The employee database with partitions

 3 sakila The sakila database

 4 world The world database

Choose Schema load job (# or name - empty to exit): 4

2020-07-20 21:27:15.221340 0 [INFO] Downloading https://downloads.

mysql.com/docs/world.sql.zip to C:\Users\myuser\AppData\Roaming\mysql_

concurrency_book\sample_data\world.sql.zip

2020-07-20 21:27:18.159554 0 [INFO] Processing statements in world.sql

2020-07-20 21:27:27.045219 0 [INFO] Load of the world schema completed

Available Schema load jobs:

===========================

 # Name Description

 1 employees The employee database

 2 employees partitioned The employee database with partitions

 3 sakila The sakila database

 4 world The world database

Choose Schema load job (# or name - empty to exit):

The load() method downloads the file with the schema definition, if it does not

already have it. The downloaded file is stored in %APPDATA\ mysql_concurrency_book\

sample_data\ on Microsoft Windows and in ${HOME}/.mysql_concurrency_book/

sample_data/ on other platforms. If you want the file re-downloaded, delete it from that

directory.

APPENDIX B MySQL ShELL MoDuLE

345

Tip As only relatively low-level network routines are available in MySQL Shell’s
Python, downloading the employees database may fail if you have a slow or
unstable connection. one option – other than installing the schema manually –
is to download https://github.com/datacharmer/test_db/archive/
master.zip and save it in the sample_data directory. After that, the load()
method will pick it up and not attempt to download it again.

If you only want to load a single schema, you can specify the name as an argument

to load(). This can be particularly useful when initiating a schema load as a command

given directly on the command line when invoking MySQL Shell, for example

shell> mysqlsh --user=myuser --py -e "concurrency_book.generate.

load('world')"

When you are done loading the schemas you need, you can reply with an empty

answer to exit. You are now ready to execute the workloads.

Note If the load process crashes complaining about the file, for example, that it
is not a ZIP file, then it suggests the file is corrupted or incomplete. In that case,
delete the file, so it is re-downloaded, or try to download the file manually using
your browser.

 Executing a Workload
You execute a workload with the run() method. If you specify the name of known

workload, then that workload will be executed immediately. Otherwise, the available

workloads are listed, and you are prompted for the workload. You can in this case specify

the workload either by the number (e.g., 15 for Listing 6-1) or by the name. When using

the name, the number of spaces between Listing and the listing number does not

matter as long as there is at least one space. When you choose the workload using the

prompt, you can choose another workload once the previous has completed.

After the workload has completed, for several of the workloads, you will be given a

list of suggestions for investigations you can do. This can, for example, be to query the

locks held by the connections used in the example. The investigations are meant as

APPENDIX B MySQL ShELL MoDuLE

https://github.com/datacharmer/test_db/archive/master.zip
https://github.com/datacharmer/test_db/archive/master.zip

346

inspiration, and you are encouraged to explore the workload using your own queries.

Some of the investigations are also used in the discussion of the example. Listing B-4

shows an example of executing a workload using the prompt.

Listing B-4. Executing a workload using the prompt

mysql-py> concurrency_book.generate.run()

Available workloads:

====================

 # Name Description

 1 Listing 2-1 Example use of the metadata_locks table

 2 Listing 2-2 Example of using the table_handles table

 3 Listing 2-3 Using the data_locks table

...

14 Listing 5-2 Example of obtaining exclusive locks

15 Listing 6-1 A deadlock for user-level locks

...

Choose workload (# or name - empty to exit): 15

Password for connections: ********

2020-07-20 20:50:41.666488 0 [INFO] Starting the workload Listing 6-1

**

* *

* Listing 6-1. A deadlock for user-level locks *

* *

**

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 105 249 6

-- 2 106 250 6

-- Connection 1

Connection 1> SELECT GET_LOCK('my_lock_1', -1);

APPENDIX B MySQL ShELL MoDuLE

347

+---------------------------+

| GET_LOCK('my_lock_1', -1) |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.0003 sec)

-- Connection 2

Connection 2> SELECT GET_LOCK('my_lock_2', -1);

+---------------------------+

| GET_LOCK('my_lock_2', -1) |

+---------------------------+

| 1 |

+---------------------------+

1 row in set (0.0003 sec)

Connection 2> SELECT GET_LOCK('my_lock_1', -1);

-- Connection 1

Connection 1> SELECT GET_LOCK('my_lock_2', -1);

ERROR: 3058: Deadlock found when trying to get user-level lock; try rolling

back transaction/releasing locks and restarting lock acquisition.

Available investigations:

=========================

 # Query

--

 1 SELECT *

 FROM performance_schema.metadata_locks

 WHERE object_type = 'USER LEVEL LOCK'

 AND owner_thread_id IN (249, 250)

 2 SELECT thread_id, event_id, sql_text,

 mysql_errno, returned_sqlstate, message_text,

 errors, warnings

 FROM performance_schema.events_statements_history

 WHERE thread_id = 249 AND event_id > 6

 ORDER BY event_id

APPENDIX B MySQL ShELL MoDuLE

348

 3 SELECT thread_id, event_id, sql_text,

 mysql_errno, returned_sqlstate, message_text,

 errors, warnings

 FROM performance_schema.events_statements_history

 WHERE thread_id = 250 AND event_id > 6

 ORDER BY event_id

Choose investigation (# - empty to exit): 2

-- Investigation #2

-- Connection 3

Connection 3> SELECT thread_id, event_id, sql_text,

 mysql_errno, returned_sqlstate, message_text,

 errors, warnings

 FROM performance_schema.events_statements_history

 WHERE thread_id = 249 AND event_id > 6

 ORDER BY event_id\G

*************************** 1. row ***************************

 thread_id: 249

 event_id: 7

 sql_text: SELECT GET_LOCK('my_lock_1', -1)

 mysql_errno: 0

returned_sqlstate: NULL

 message_text: NULL

 errors: 0

 warnings: 0

*************************** 2. row ***************************

 thread_id: 249

 event_id: 8

 sql_text: SELECT GET_LOCK('my_lock_2', -1)

 mysql_errno: 3058

returned_sqlstate: HY000

 message_text: Deadlock found when trying to get user-level lock;

try rolling back transaction/releasing locks and restarting lock

acquisition.

 errors: 1

 warnings: 0

APPENDIX B MySQL ShELL MoDuLE

349

*************************** 3. row ***************************

 thread_id: 249

 event_id: 9

 sql_text: SHOW WARNINGS

 mysql_errno: 0

returned_sqlstate: NULL

 message_text: NULL

 errors: 0

 warnings: 0

3 rows in set (0.0009 sec)

Available investigations:

=========================

 # Query

--

 1 SELECT *

 FROM performance_schema.metadata_locks

 WHERE object_type = 'USER LEVEL LOCK'

 AND owner_thread_id IN (249, 250)

 2 SELECT thread_id, event_id, sql_text,

 mysql_errno, returned_sqlstate, message_text,

 errors, warnings

 FROM performance_schema.events_statements_history

 WHERE thread_id = 249 AND event_id > 6

 ORDER BY event_id

 3 SELECT thread_id, event_id, sql_text,

 mysql_errno, returned_sqlstate, message_text,

 errors, warnings

 FROM performance_schema.events_statements_history

 WHERE thread_id = 250 AND event_id > 6

 ORDER BY event_id

Choose investigation (# - empty to exit):

APPENDIX B MySQL ShELL MoDuLE

350

2020-07-20 20:50:46.749971 0 [INFO] Completing the workload Listing 6-1

-- Connection 1

Connection 1> SELECT RELEASE_ALL_LOCKS();

+---------------------+

| RELEASE_ALL_LOCKS() |

+---------------------+

| 1 |

+---------------------+

1 row in set (0.0004 sec)

-- Connection 2

Connection 2> SELECT RELEASE_ALL_LOCKS();

+---------------------+

| RELEASE_ALL_LOCKS() |

+---------------------+

| 2 |

+---------------------+

1 row in set (0.0002 sec)

2020-07-20 20:50:46.749971 0 [INFO] Disconnecting for the workload Listing 6-1

2020-07-20 20:50:46.749971 0 [INFO] Completed the workload Listing 6-1

Available workloads:

====================

 # Name Description

 1 Listing 2-1 Example use of the metadata_locks table

 2 Listing 2-2 Example of using the table_handles table

 3 Listing 2-3 Using the data_locks table

...

Choose workload (# or name - empty to exit):

mysql-py>

APPENDIX B MySQL ShELL MoDuLE

351

There are a few things to notice from this example. After choosing the workload, you

are asked for a password. This is the password for the MySQL account that you are using.

The other connection options are taken from the session.uri property in MySQL Shell,

but for security reasons, the password is not stored. If you execute multiple workloads in

one invocation of run(), you will only be prompted for the password once.

At the start of the execution of the workload, there is an overview of the process list

ids (as from SHOW PROCESSLIST), the (Performance Schema) thread ids, and the last

event ids before the start of the workload for each connection used for the workload:

-- Connection Processlist ID Thread ID Event ID

-- --

-- 1 105 249 6

-- 2 106 250 6

You can use these ids to execute your own investigative queries, and you can use the

overview to identify listings that have been implemented as a workload in concurrency_

book.generate.run().

At the end of executing the workload, this example has three queries you can execute

to investigate the issue the example demonstrates. You can execute one or more of these

by specifying the number of the query (one query at a time). In the code listings in this

book, the output of an investigation is preceded with a comment showing which of the

investigations has been executed, for example

-- Investigation #2

The number of investigations per workload varies from none to more than ten. The

listings in the book do not always include the result of all of the investigations as some

are left as inspiration and further examination of the issue.

Once you are done with the investigation, submit an empty answer to exit from the

workload. If you do not want to execute more workloads, submit an empty answer again

to exit the run() method.

If you only want to execute a single workload, you can specify the name as an

argument to run(). This can be particularly useful when executing a workload as a

command given directly on the command line when invoking MySQL Shell, for example

shell> mysqlsh --user=myuser --py -e "concurrency_book.generate.

run('Listing 6-1')"

The remainder of this appendix describes the internals of the module.

APPENDIX B MySQL ShELL MoDuLE

352

 Module Structure
The files included in the concurrency_book module can be divided into three categories

depending on how they are used. The structure is shown in Figure B-2.

At the top level, there is the generate.py file which is the entry point and where the

four public methods (help(), load(), show(), and run()) are implemented. The libs

directory contains various libraries used by the module. Unless you plan on extending

the functionality of the module, you will not need to modify these files, but some of the

libraries are also useful if you want to implement your own workloads in Python.

Figure B-2. The structure of the concurrency_book module

APPENDIX B MySQL ShELL MoDuLE

353

The workloads directory contains the workload definitions of which all have a YAML file

and two tests (for Chapters 17 and 18) also include a Python file. If you want to modify or

add tests, this is where you need to edit the files.

 Library Files
It is worth touching on the library files as some of them are useful for implementing

complex workloads like those in Chapters 17 and 18.

Note Because the module is written for use from within MySQL Shell, referencing
other module is a bit different from normal Python modules. This section contains some
examples, and you can look at some of the existing workloads for further examples.

 innodb_buffer_pool.py

This module implements an interface to monitor the InnoDB buffer pool through the

information_schema.INNODB_BUFFER_POOL_STATS view. You will need to provide a

MySQL Shell session object that is connected to MySQL when you initialize the Stats

class. An example usage is

noinspection PyUnresolvedReferences

from concurrency_book import libs

noinspection PyUnresolvedReferences

import concurrency_book.libs.innodb_buffer_pool

bp_stats = libs.innodb_buffer_pool.Stats(session)

bp_stats.collect()

...

bp_stats.collect()

young = bp_stats.delta('pages_made_young')

print(f'Made young: {young.value:6d} pages ' +

 f'({young.rate:8.2f} pages/s)')

The collect() method queries that view and stores the result, and the delta()

method calculates the difference between two results (by default the first and last) for

the column specified and returns a named tuple with the difference as well as the rate.

APPENDIX B MySQL ShELL MoDuLE

354

 innodb_monitor.py

This module implements an interface to monitor the InnoDB monitor output with

support to return the content of individual sections and for the SEMAPHORES section

calculate some statistics that can be used to monitor when waits have happened. You

will need to provide a MySQL Shell session object that is connected to MySQL when you

initialize the InnodbMonitor class. An example usage is

noinspection PyUnresolvedReferences

from concurrency_book import libs

noinspection PyUnresolvedReferences

import concurrency_book.libs.innodb_monitor

innodb = libs.innodb_monitor.InnodbMonitor(session)

innodb.fetch()

semaphores = innodb.get_section('SEMAPHORES')

if semaphores.num_waits >= 2:

 print(r'mysql> SHOW ENGINE INNODB STATUS\G')

 print('...')

 print(semaphores.content)

 print('...')

 innodb_mutex.py

The innodb_mutex.py module implements support for monitoring the output of

SHOW ENGINE INNODB MUTEX. There is support for fetching the total waits and the delta

compared to the previous output. You will need to provide a MySQL Shell session object

that is connected to MySQL when you initialize the InnodbMutexMonitor class. An

example usage is

noinspection PyUnresolvedReferences

from concurrency_book import libs

noinspection PyUnresolvedReferences

import concurrency_book.libs.innodb_mutex

mutex = libs.innodb_mutex.InnodbMutexMonitor(session)

mutex.fetch()

...

APPENDIX B MySQL ShELL MoDuLE

355

mutex.fetch()

delta = mutex.delta_by_file('dict'))

if delta['btr0sea.cc'] > 0:

 print(mutex.delta_by_file_line('report'))

The delta_by_file() and delta_by_file_line() group the waits by the file name

and filename:line, respectively. They can return the result either as a dictionary or a

report (using MySQL’s table format). Additionally, there are three methods to return the

number of waits as an integer, get_waits_by_name(), get_waits_by_file(), and get_

waits_by_file_line(), each taking one argument with the value of what to filter by.

There are also four properties:

• output_time: A datetime.datetime object when the latest output

was fetched.

• total_waits: The total waits across all names in the latest output.

• waits_increased: A Boolean reflecting whether the total number of

waits increased between the two most recent measurements.

• report: The latest output printed similar to how MySQL returns a

result in table format.

 load.py

The load.py module is where the logic for loading test data is implemented. If you want

to add support for loading a new schema, you will need to add it to KNOWN_SCHEMAS and

URLS constants and add a method named _exec_<schema name>(), for example, for the

world schema, the method is _exec_world(), and it has the following definition:

 def _exec_world(self):

 """Execute the steps required to load the world schema."""

 file = self._download()

 with zipfile.ZipFile(file) as zip_fs:

 self._delimiter = ';'

 with zip_fs.open('world.sql') as world:

 self._sql_file(world, zip_fs)

 LOG.info('Load of the world schema completed')

 return True

APPENDIX B MySQL ShELL MoDuLE

356

Notice that the file downloaded with the SQL statements is never explicitly

decompressed. Instead the zipfile.ZipFile() class is used to access the compressed

files directly.

 log.py

This module provides a logging functionality including support for printing under a lock

for use in multi-threaded workloads. An example of using the module is

import threading

noinspection PyUnresolvedReferences

from concurrency_book import libs

noinspection PyUnresolvedReferences

import concurrency_book.libs.log

LOG = libs.log.Log(libs.log.INFO)

lock = threading.Lock()

LOG.lock = lock

LOG.level = libs.log.DEBUG

LOG.debug('Some debug informatiom.')

LOG.level = libs.log.INFO

LOG.info('Some informational content.')

LOG.warning('Something unexpected happened.')

LOG.error('An error occurred.')

LOG.lock = None

When initializing the Log() class, you provide the default log level which is one

of libs.log.DEBUG, libs.log.INFO, libs.log.WARNING, or libs.log.ERROR. The log

level can be changed later using the level property. If you set the lock property with an

instance of the threading.Lock() class, then that lock will be acquired before each time

the log object is used for logging, making it safe to log from multiple threads at the same

time.

You may ask why the built-in logging module is not used. The reason is mainly the

support for logging under a lock and that log.py also includes the logic for logging the

SQL statements and their result.

APPENDIX B MySQL ShELL MoDuLE

357

 metrics.py

The metrics.py module allows you to monitor the sys.metrics view. This is what was

used for the test cases in Chapters 17 and 18 to generate CSV outputs of various metrics.

You will need to provide a MySQL Shell session object that is connected to MySQL when

you initialize the Metrics class. An example usage is

noinspection PyUnresolvedReferences

from concurrency_book import libs

noinspection PyUnresolvedReferences

import concurrency_book.libs.metrics

metrics = libs.metrics.Metrics(session)

for i in range(10):

 metrics.collect()

 sleep(1)

metrics.collect()

count_metrics = [

 'innodb_row_lock_current_waits',

 'lock_row_lock_current_waits',

]

delta_metrics = [

 'innodb_row_lock_time',

 'lock_deadlocks',

 'lock_timeouts',

]

print('-- Metrics reported by count collected during the test:')

metrics.write_csv(count_metrics)

print('')

print('-- Metrics reported by rate collected during the test:')

metrics.write_rate_csv(delta_metrics)

APPENDIX B MySQL ShELL MoDuLE

358

 query.py

This module includes various tools related to executing the workload and investigation

queries. Of most interest in this discussion is the Formatter() class which can be used

to format queries including adding indentation for keeping the lines of the query aligned

when adding a prompt and replacing parameter placeholders. You must provide three

lists with the process list ids, thread ids, and last event id before the tests, respectively,

when initializing the class. An example usage is

noinspection PyUnresolvedReferences

from concurrency_book import libs

noinspection PyUnresolvedReferences

import concurrency_book.libs.query

sql_formatter = libs.query.Formatter([6, 7], [12, 14], [6, 6])

sql = """

SELECT *

 FROM world.city""".strip()

print('mysql> ' + sql_formatter.indent_sql(sql, 7))

The supported placeholders will be discussed when covering how to implement your

own tests.

Another interesting function of query.py is get_connection_ids() which takes a

session as the argument and returns a list with the process list id, thread id, and latest

event id for the connection. For example (using MySQL Shell interactively)

mysql-py> from concurrency_book import libs

mysql-py> import concurrency_book.libs.query

mysql-py> libs.query.get_connection_ids(session)

[

 8,

 28,

 18

]

APPENDIX B MySQL ShELL MoDuLE

359

 util.py

The util.py module contains various utilities used throughout the concurrency_book

module. For creating test cases, the most interesting functions are prompt_int() and

prompt_bool() which are used in the case studies in Chapters 17 and 18 for asking

questions on how the test should be executed. Example uses are

noinspection PyUnresolvedReferences

from concurrency_book import libs

noinspection PyUnresolvedReferences

import concurrency_book.libs.util

prompt = 'Specify the number of seconds to run for'

max_runtime = libs.util.prompt_int(1, 3600, 10, prompt)

prompt = 'Restart MySQL before executing the test?'

restart_mysql = libs.util.prompt_bool('No', prompt)

The prompt_int() function takes four arguments: the minimum value, maximum value,

default value, and the text for the prompt. The prompt_bool() function takes two arguments:

the default value as 'No'/'Yes' and the prompt text; the answer is returned as True/False.

If you implement a workload in Python, you can use the get_session() function

to create a new session. The function takes the workload named tuple (see next) as an

argument.

 workloads.py

The final library module is workloads.py which implements the YAML parser used

to convert the workload definitions to Workload named tuples which in turn contain

Query, Completion, Investigation, and Implementation named tuples. The reason for

implementing a custom parser instead of using a PyPi package is that it is not simple

to add third-party packages to the Python shipped with MySQL Shell. Additionally,

workloads.py includes validation of the workloads.

Caution The yAML parser in workloads.py is not a full-fledged parser, but just
enough to handle the supported workload features. Do not try to use it for general-
purpose yAML files.

APPENDIX B MySQL ShELL MoDuLE

360

If you need to add new properties to one of the named tuples, then the definition

is at the top of the file. They support optional and required keys which are tracked in

constant dictionaries just after the definition of the named tuples. If you change the

fields of the Workload tuple, you will also have to edit the _dict_to_tuple() function.

 Workloads Directory
If you want to add a new workload, then you need to add a YAML file with the definition

to the workloads directory. You can name the file as you wish as long as the file name

extension is .yaml or .yml. Files with these extensions are automatically parsed when

the concurrency_book.generate module is imported. The structure of the YAML files is

discussed next.

 Defining Workloads
The workloads are defined through a series of elements of which some are required, and

some are optional. While there is some flexibility in the syntax, remember it is not a full

YAML parser that reads the files, so you are encouraged to use a syntax that matches the

existing workload definitions.

Tip If you have problems getting the parser to read your workload definitions,
make sure you use the same structure as in one of the existing workloads.

At the top level, you define the global properties for the workload which include the

name and a description, the number of connections to use, etc. Then follows a list of

queries to execute and at the end optional queries to execute upon completion of the

workload and investigations that can be executed. Listing B-5 shows an example utilizing

most of the supported features.

Listing B-5. Example demonstrating the workload syntax

--- # Listing B-5. Example demonstrating the workload syntax

name: Listing B-5

description: Example demonstrating the workload syntax

connections: 2

APPENDIX B MySQL ShELL MoDuLE

361

concurrent: No

loops: 1

queries:

 - connection: 1

 sql: SET SESSION innodb_lock_wait_timeout = 1

 silent: No

 wait: Yes

 - connection: 1

 sql: START TRANSACTION

 - connection: 2

 sql: START TRANSACTION

 - connection: 1

 sql: SET @id = CEIL(RAND()*4079)

 - connection: 1

 sql: |

 SELECT *

 FROM world.city

 WHERE ID = @id

 format: json

 store: Yes

 - connection: 2

 sql: |

 UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130

 - connection: 1

 comment: This will cause a lock wait timeout

 sql: |

 UPDATE world.city

 SET Population = Population + 1

 WHERE Name = ?

 parameters: [Name]

completions:

 - connection: 1

 sql: ROLLBACK

APPENDIX B MySQL ShELL MoDuLE

362

 - connection: 2

 sql: ROLLBACK

investigations:

 - sql: |

 SELECT thread_id, event_id, sys.format_statement(sql_text) AS 'SQL',

 mysql_errno, message_text

 FROM performance_schema.events_statements_history

 WHERE thread_id IN ({thread_ids})

 AND mysql_errno > 0

 ORDER BY thread_id, event_id

 format: vertical

 - sql: |

 SELECT THREAD_ID, EVENT_ID, SQL_TEXT

 FROM performance_schema.events_statements_history

 WHERE thread_id = ? AND event_id > ?

 ORDER BY thread_id, event_id

 parameters: [thread_id, event_id]

 format: vertical

The remainder of this appendix goes through each of global, queries and

completions, and investigations and discusses the supported keys.

 Global Keys
The global keys that are supported are summarized in Table B-1 with the key name, data

type, whether it is required, and a description.

APPENDIX B MySQL ShELL MoDuLE

363

Table B-1. Global workload keys

Key Name Data Type Required Description

name String yes The name of the workload. This is used to select the

workload.

description String yes A description of the workload. This is used when

listing the available workloads.

connections Integer No The number of connections to create in addition to the

main connection. Not setting this key is only useful when

the implementation key is set. The default is 0.

queries List No The queries to execute for the workload. The

“Queries and Completions” subsection includes more

information. The default is an empty list.

completions List No The queries to execute upon completion of the

workload (after the investigations have been

completed). The completions are identical to queries

and are discussed at the same time. The default is an

empty list.

investigations List No The queries to make available as example

investigations between executing the queries and the

completions. The “Investigations” subsection includes

more information.

implementation List No The module, class name, and extra arguments for a

Python class implementing the workload, for example

[workloads.listing_17_1, ForeignKeys,

{}]. This is used for Chapters 17 and 18. The default

is None.

protocol Enum No Whether to require the connection to use the mysql or

mysqlx protocol. This is used for the Listing 6-8

workload. The default is None which means either

protocol is allowed.

loops Integer No The number of times to execute the queries in the

queries list. The default is 1.

APPENDIX B MySQL ShELL MoDuLE

364

In most of the workloads, the keys that are used are limited to name, description,

connections, queries, completions, and investigations.

If you implement the workload in Python, then the class signature must consist

of (workload, session, log, ...) where workload is the named tuple defining the

workload, session is the global MySQL Shell session object, and log is an instance of the

libs.log.Log(). The ellipses signify any additional arguments you require for the test

and can be used to reuse the same class for different workloads.

 Queries and Completions
The queries and completions are identical except for the time they are executed. There

are a number of properties defining a query as summarized in Table B-2.

Table B-2. Keys for queries and implementations

Key Name Data Type Required Description

connection Integer yes The connection that will execute the query. This is an

integer between 1 and the number of connections

for the workload.

sql String yes The SQL statement to execute.

format Enum No The format to use when printing the result. The same

formats as for shell.dump_rows() are supported:

table, tabbed, vertical, json, ndjson, json/

raw, json/array, json/pretty. The default is

table.

wait Boolean No Whether to wait for the query to complete before

executing the next query. It is important to set this to

No when executing a query that will block for more

than 10 seconds.

comment String No A comment to print before the query.

show_result Boolean No Whether to print the result of the query. The default

is Yes.

(continued)

APPENDIX B MySQL ShELL MoDuLE

365

Key Name Data Type Required Description

silent Boolean No Whether to suppress printing the query and its result.

The default is No.

store Boolean No Whether to store the result of the first row of the

result so it can be used as parameters in subsequent

queries for the same connection. Note that this

consumes the result, so it cannot be printed, and any

previous stored result is discarded. The default is No.

parameters List No A list of column labels from a previous query where

the result was stored. The values for those columns

will be used to replace the ? placeholders in the

query. Note that the ? placeholder will still be

visible when printing the query as the value of the

parameter is not known in the part of the code that

prints the query.

sleep Integer No The number of seconds to sleep after executing the

query before executing the next query. The default

is 0.

Table B-2. (continued)

By far the most commonly used keys are connection, sql, format, and wait. The

SQL statement can be written either on the same line as the key or using | to start a

multiline string:

 - connection: 2

 sql: START TRANSACTION

 - connection: 2

 sql: |

 UPDATE world.city

 SET Population = Population + 1

 WHERE ID = 130

APPENDIX B MySQL ShELL MoDuLE

366

There is also support for a limited number of parameters that are written inline into

the statement. These are

• {processlist_ids}: This parameter is replaced with a list of process

list ids for all connections in the workload.

• {thread_ids}: This parameter is replaced with a list of thread ids for

all connections in the workload.

• {thread_ids_not_self}: This parameter is replaced with a list of

thread ids for all connections in the workload except the connection

itself.

• {(event|processlist|thread)_id_connection_<connection>+<a

djust>}: This group of parameters is replaced with either the event,

process list, or thread id of a specific connection optionally adjusted

with a positive integer. Examples are {event_id_2+1} for the last

event id before the workload plus 1 for connection 2 and {thread_

id_1} for the thread id of connection 1.

The most commonly used of these four queries is {thread_ids_not_self}, whereas

the others are more useful for investigations.

 Investigations
The investigations support a subset of the keys that are used by queries. These are listed

in Table B-3.

Table B-3. Keys for queries and implementations

Key Name Data Type Required Description

sql String yes The SQL statement to execute.

format Enum No The format to use when printing the result. The same

formats as for shell.dump_rows() are supported:

table, tabbed, vertical, json, ndjson, json/raw,

json/array, json/pretty. The default is table.

parameters List No A list of parameters to replace the ? placeholders in the

query. The supported parameters will be discussed shortly.

APPENDIX B MySQL ShELL MoDuLE

367

The sql and format keys work the same way as for queries, but there are some

differences for the parameters key as the substitution is not based on a stored result but

rather has a specific list of supported parameters:

• processlist_id: The process list id for a connection.

• thread_id: The thread id for a connection.

• event_id: The last event id before the workload for a connection.

• thread_ids: A list of all the thread ids for the workload.

For processlist_id, thread_id, and event_id, you can optionally add + and an

integer to adjust the value (this is mainly useful for event ids), for example, event_id+2.

For these parameters, it also applies that they trigger a loop of all the connections which

expands one investigation definition into one per connection. For example, consider

workload that was shown in Listing B-5 which has an investigation defined as

 - sql: |

 SELECT THREAD_ID, EVENT_ID, SQL_TEXT

 FROM performance_schema.events_statements_history

 WHERE thread_id = ? AND event_id > ?

 ORDER BY thread_id, event_id

 parameters: [thread_id, event_id]

 format: vertical

This results in two investigation queries (the ids will differ from execution to

execution):

 2 SELECT THREAD_ID, EVENT_ID, SQL_TEXT

 FROM performance_schema.events_statements_history

 WHERE thread_id = 89 AND event_id > 6

 ORDER BY thread_id, event_id

 3 SELECT THREAD_ID, EVENT_ID, SQL_TEXT

 FROM performance_schema.events_statements_history

 WHERE thread_id = 90 AND event_id > 6

 ORDER BY thread_id, event_id

This simplifies writing investigations that applies to one connection at a time.

APPENDIX B MySQL ShELL MoDuLE

368

 Summary
In this appendix, you learned how you can reproduce the examples in this book

using the concurrency_book.generate MySQL Shell module from this book’s GitHub

repository. The primary purpose of the module is to make it easy to try the same

examples and provide inspiration on how to examine the available information for each

case.

You may also be interested in modifying the examples or add new test cases. If you

modify an existing example, it is recommended that you make a copy of it unless you just

want to add more investigation queries; that way you can still reproduce the examples

from the book. A good reason to add more workloads is to build up a library of issues you

encounter in your work, so you can easily reproduce them and practice troubleshooting

them.

This concludes MySQL Concurrency: Locking and Transactions for MySQL

Developers and DBAs. I hope the book has inspired you and that you are better prepared

to work with locks and transactions.

APPENDIX B MySQL ShELL MoDuLE

369
© Jesper Wisborg Krogh 2021
J. W. Krogh, MySQL Concurrency, https://doi.org/10.1007/978-1-4842-6652-6

Index

A, B
ACID, see Atomicity, consistency,

isolation, and durability
Atomicity, consistency, isolation, and

durability, 193–196, 200, 295

C
CATS, see Contention-Aware Transaction

Scheduling
concurrency_book.generate

commands
help(), 7
load(), 7, 8
run(), 7
show(), 7

executing (see concurrency_book.
generate, commands, run())

import (see concurrency_book.
generate, install)

install, 5–6, 338
loading test data (see concurrency_

book.generate, commands,
load())

prerequisites, 4–5, 337
source code files

generate.py, 338, 352
innodb_buffer_pool.py, 353
innodb_monitor.py, 354
innodb_mutex.py, 354, 355

load.py, 355, 356
log.py, 356
metrics.py, 357
query.py, 358
util.py, 359, 360
workloads.py, 360, 361

workload keys
protocol, 5, 337, 363

Configuration options
autocommit, 70, 85, 89, 93, 158, 245
binlog_group_commit_sync_delay, 200
binlog_group_commit_sync_no_

delay_count, 200
binlog_transaction_dependency_

tracking, 201
foreign_key_checks, 69, 194
gtid_next, 84
innodb_adaptive_hash_index, 166,

168, 316, 317
innodb_adaptive_hash_index_parts,

69, 166, 317
innodb_autoinc_lock_mode, 132, 133
innodb_buffer_pool_instances,

166, 335
innodb_buffer_pool_size, 64
innodb_concurrency_tickets, 69
innodb_deadlock_detect, 153
innodb_flush_log_at_trx_commit, 196
innodb_lock_wait_timeout, 145, 146,

153, 277

https://doi.org/10.1007/978-1-4842-6652-6#DOI

370

innodb_max_purge_lag, 199
innodb_max_purge_lag_delay, 199
innodb_monitor_disable, 51
innodb_monitor_enable, 51, 53
innodb_monitor_reset, 51, 53
innodb_monitor_reset_all, 51, 53
innodb_old_blocks_time, 303
innodb_print_all_deadlocks, 61,

260, 263
innodb_purge_batch_size, 199
innodb_purge_threads, 199
innodb_rollback_on_timeout, 146,

153, 256
innodb_spin_wait_delay, 153, 313
innodb_spin_wait_pause_multiplier,

153, 154, 313
innodb_status_output, 61, 334
innodb_status_output_locks, 54, 335
innodb_sync_spin_loops, 154, 304,

313, 318
innodb_thread_concurrency, 69
lock_wait_timeout, 109, 141, 143–145,

221, 231, 233, 245, 277, 294
max_execution_time, 229
max_write_lock_count, 169, 294
performance_schema_consumer_

events_waits_current, 42
performance_schema_events_

statements_history_long_size, 326
performance_schema_events_

statements_history_size, 326
performance_schema_events_

transactions_history_long_size, 325
performance_schema_events_

transactions_history_size, 325
performance_schema_events_waits_

history_long_size, 42, 329

performance_schema_events_waits_
history_size, 42, 329

performance_schema_instrument, 42
slave_parallel_type, 201
sync_binlog, 196
table_open_cache_instances, 43,

166, 330
transaction_isolation, 163–165, 207
unique_checks, 69, 195

Consistent reads, 128, 207, 211–213
Consistent snapshot, see Read view
Contention-Aware Transaction

Scheduling, 70, 142–143, 155

D
Dirty read, 217

E
Error number

1040, 220
1099, 116
1100, 116
1205, 47, 143–145, 221, 231, 247,

279–281, 283
1206, 197
1213, 47, 259, 260, 262, 279, 280, 283
3058, 107
5011, 220
11958, 197
ER_CON_COUNT_ERROR

(see Error number, 1040)
ER_LOCK_DEADLOCK

(see Error number, 1213)
ER_LOCK_TABLE_FULL

(see Error number, 1206)
ER_LOCK_WAIT_TIMEOUT

(see Error number, 1205)

Configuration options (cont.)

Index

371

ER_TABLE_NOT_LOCKED
(see Error number, 1100)

ER_TABLE_NOT_LOCKED_FOR_
WRITE (see Error number, 1099)

ER_USER_LOCK_DEADLOCK
(see Error number, 3058)

Example data
employees, 7, 8, 27–30
sakila, 7, 8, 20–27
world, 7, 8, 15–20

F, G, H
Foreign key, 16, 22, 23, 69, 84, 102, 117,

153, 162, 169–171, 183, 184,
189–191, 194, 213, 219, 267, 275,
277–296

I
Index

ascending, 176, 178
descending, 176, 178, 179
primary, 172–175
secondary, 172, 178, 183
unique, 180, 181, 183, 190

Information Schema
views

INNODB_BUFFER_PAGE, 331
INNODB_BUFFER_POOL_STATS, 335
INNODB_METRICS, 49, 52, 77–81,

303, 334
INNODB_TRX, 67–75, 86, 142, 150,

229, 243, 325, 335
Innobase, 137–139
InnoDB monitor, 43, 68, 75–77, 80, 154,

197, 223, 250, 264, 297, 305–309
InnoDB monitor output

BACKGROUND THREAD, 334
BUFFER POOL AND MEMORY, 335
FILE I/O, 335
INDIVIDUAL BUFFER POOL INFO, 335
INSERT BUFFER AND ADAPTIVE

HASH INDEX, 301, 317, 335
LATEST DETECTED DEADLOCK,

56–58, 60, 260, 263, 335
LATEST FOREIGN KEY ERROR, 335
LOG, 335
ROW OPERATIONS, 335
SEMAPHORES, 56, 61–65, 153, 154,

297, 301, 306, 309, 317, 334
TRANSACTIONS, 59–60, 75, 76, 335

InnoDB storage engine
history list length, 198
metrics

adaptive_hash_searches, 314, 315
adaptive_hash_searches_btree, 314
latch, 49, 65
lock_deadlocks, 51, 259, 260, 284, 285
lock_timeouts, 51, 250, 284, 285
trx_active_transactions, 78
trx_commits_insert_update, 78
trx_nl_ro_commits, 78
trx_on_log_no_waits, 78
trx_on_log_wait_loops, 79
trx_on_log_waits, 79
trx_ro_commits, 77
trx_rollback_active, 78
trx_rollbacks, 78
trx_rollbacks_savepoint, 78
trx_rseg_current_size, 79
trx_rseg_history_len, 79
trx_rw_commits, 77
trx_undo_slots_cached, 79
trx_undo_slots_used, 79
undo log, 198–200

Index

372

J, K
Join order, 162

L
Lock contention, 35, 39, 40, 43, 45, 103,

109, 142–145, 153, 220, 222–223,
226–229, 231–233, 235–239, 243

Locks
auto-increment lock

S (see Locks, shared)
X (see Locks, exclusive)

backup lock, 118–121, 143, 145
deadlocks, 106, 107, 141, 146–153,

259–275
exclusive, 100–102
flush lock, 105, 109–111, 122, 143, 145,

219–230
gap before record, 127, 268
gap lock, 123, 126, 127, 130, 132, 139,

162, 163, 165, 178, 179, 182, 206,
207, 213–215, 260, 269

insert intention lock, 130–132, 139,
260, 268

intention exclusive, 102
intention shared, 102
IS (see Locks, intention shared)
IX (see Locks, intention exclusive)
log lock, 121, 122
metadata lock, 111–115, 143, 145, 156,

186–191, 231–246, 281, 283, 285,
290, 292, 294

next-key lock, 123, 124, 126, 132, 139
page lock, 128, 139
predicate lock, 123, 128
record lock, 123, 124, 132, 139, 178,

182, 183, 205, 207, 210, 215, 260,
261, 274, 277, 294

S (see Locks, shared)
shared, 97–99
table definition cache version lock,

109, 144, 222, 226, 227
table lock, 115, 116, 122
TDC version lock (see Locks,

table definition cache lock)
user-level lock, 105–109
X (see Locks, exclusive)

M, N
MBR, see Minimum bounding

rectangle
Minimum bounding rectangle, 128
MySQL programs

mysqldump, 199, 208
mysqlpump, 199, 208
mysqlsh (see MySQL Shell)

MySQL Shell, 4–6, 9, 14, 15, 17, 27, 29, 93,
109, 218, 226, 243, 273, 277

O
Optimizer hints

MAX_EXECUTION_TIME, 229

P
Performance Schema

instruments
transactions, 86
wait/io/file/, 322
wait/io/file/sql/binlog, 322
wait/io/table/sql/handler, 322
wait/lock/metadata/sql/mdl, 32,

233, 322
wait/lock/table/sql/handler,

34, 322

Index

373

wait/synch/, 41, 134–136
wait/synch/mutex/innodb/

dblwr_mutex, 41
wait/synch/mutex/innodb/

trx_sys_mutex, 217
wait/synch/mutex/sql/

LOCK_table_cache, 43, 330
NESTING_EVENT_ID, 85
tables

data_locks, 36–40, 99, 101, 102, 107,
113, 116, 117, 119, 124, 128, 130,
182, 185, 187, 189, 205, 206, 209,
210, 215, 253, 321–324

data_lock_waits, 36, 39, 40, 253, 322
events_errors_summary_by_

account_by_error, 46, 333
events_errors_summary_by_host_

by_error, 46, 333
events_errors_summary_by_thread_

by_error, 46, 333
events_errors_summary_by_user_

by_error, 46, 334
events_errors_summary_global_

by_error, 46, 47, 260, 278, 280,
283, 334

events_statements_current, 34, 44,
89, 91, 309, 326, 328

events_statements_histogram_
by_digest, 327

events_statements_histogram_
global, 328

events_statements_history, 44, 88,
89, 91, 243, 270, 309, 326

events_statements_history_long,
44, 270, 309, 326

events_statements_summary_by_
account_by_event_name, 327

events_statements_summary_by_
digest, 309, 327–329

events_statements_summary_by_
host_by_event_name, 327

events_statements_summary_by_
program, 327

events_statements_summary_by_
thread_by_event_name, 327

events_statements_summary_by_
user_by_event_name, 327

events_statements_summary_
global_by_event_name, 327

events_transactions_current, 83–88,
91, 243, 325

events_transactions_history,
83–85, 325

events_transactions_history_long,
83–85, 325

events_transactions_summary_by_
account_by_event_name, 94, 326

events_transactions_summary_by_
host_by_event_name, 94, 326

events_transactions_summary_by_
thread_by_event_name, 94, 326

events_transactions_summary_by_
user_by_event_name, 95, 326

events_transactions_summary_
global_by_event_name, 94, 95, 326

events_waits_current, 41, 42, 329
events_waits_history, 41, 42, 329
events_waits_history_long, 41, 42,

135, 137, 329
events_waits_summary_by_

account_by_event_name, 42, 330
events_waits_summary_by_host_

by_event_name, 42, 330

Index

374

events_waits_summary_by_
instance, 43, 330

events_waits_summary_by_thread_
by_event_name, 43, 330

events_waits_summary_by_user_
by_event_name, 43, 330

events_waits_summary_global_by_
event_name, 43, 330

file_summary_by_event_name, 332
file_summary_by_instance, 332
global_status, 49, 334
log_status, 121, 122
metadata_locks, 32–35, 99, 100, 107,

113, 116, 119, 187, 189, 233, 285,
290, 292, 321–324

prepared_statements_instances, 328
session_connect_attrs, 243
session_status, 334
setup_consumers, 41, 135, 137
setup_instruments, 41, 134, 136
table_handles, 34, 35, 322
table_io_waits_summary_by_

index_usage, 331
table_io_waits_summary

_by_table, 330
threads, 68, 73, 309, 326, 327, 330,

333, 335
performance_schema.metadata

_locks columns
LOCK_MODE

INSERT_INTENTION, 131, 132
PRDT_PAGE, 128
PREDICATE, 128, 130, 139

LOCK_TYPE
EXCLUSIVE, 105, 111, 116, 117, 173,

175, 188, 190, 235, 236, 238, 285,
292, 325

INTENTION_EXCLUSIVE, 188
SHARED, 109, 116
SHARED_HIGH_PRIO, 324
SHARED_NO_READ_WRITE,

114, 324
SHARED_NO_WRITE, 190, 324
SHARED_READ, 33,

98, 99, 101, 102, 114, 187, 188,
235–237, 239, 285–289, 292, 324

SHARED_READ_ONLY, 324
SHARED_UPGRADABLE, 189, 190,

237, 289, 290, 324
SHARED_WRITE, 100, 102,

286–289, 324
SHARED_WRITE_LOW_PRIO, 324

OBJECT_TYPE
ACL_CACHE, 323
BACKUP_LOCK, 118–122, 323
CHECK_CONSTRAINT, 323
COLUMN_STATISTICS, 323
COMMIT, 323
EVENT, 323
FOREIGN_KEY, 323
FUNCTION, 323
GLOBAL, 323
LOCKING_SERVICE, 323
PROCEDURE, 323
RESOURCE_GROUPS, 323
SCHEMA, 172, 185, 186, 188, 323
SRID, 323
TABLE, 32, 33, 35, 98,

100, 113, 116, 117, 183, 188–190,
285, 290, 323

TABLESPACE, 323
TRIGGER, 323
USER_LEVEL_LOCK,

105–107, 323
Preemptive locking, 157, 169, 170, 252

Performance Schema (cont.)

Index

375

Q
Query state

waiting for table flush, 220, 224, 227
waiting for table metadata lock, 231

R
Read view, 198, 207, 212, 213, 217
Read-write transaction, 85, 95, 96, 207
Record access order, 162, 275

S
Semi-consistent reads, 216–217
Shoot The Other Node In The Head, 149
Source code files

btr0sea.cc, 138, 139, 168, 300, 307, 309
buf0buf.cc, 63, 64, 138
buf0flu.cc, 64, 138
dict0dict.cc, 64, 138
fil0fil.cc, 64, 138
hash0hash, 138, 309
sync0sharded_rw.h, 64, 138

Spatial Reference System Identifier, 128
SQL functions

GET_LOCK(), 106
FORMAT_PICO_TIME(), 243
IS_FREE_LOCK(), 106
IS_USED_LOCK(), 106
RELEASE_ALL_LOCKS(), 107
RELEASE_LOCK(), 106

SQL statements
ALTER TABLE, 100, 277, 280, 290, 292
ANALYZE TABLE, 222
CHECK TABLE, 155
EXPLAIN FOR CONNECTION, 228
FLUSH TABLES, 109, 111, 115, 118,

144, 221, 222, 224, 226–229

FLUSH TABLES WITH READ LOCK,
109, 111, 115, 221, 224, 226, 230, 232

LOCK INSTANCE FOR BACKUP,
119, 121

LOCK TABLES, 115, 116, 232
OPTIMIZE TABLE, 113, 114
SELECT … FOR SHARE, 98, 117, 169,

214, 252, 275
SELECT … FOR UPDATE, 117, 169,

252, 275
SELECT … LOCK IN SHARE MODE

(see SQL functions, SELECT …
FOR SHARE)

SET TRANSACTION, 207
SHOW ENGINE INNODB MUTEX, 43,

64, 134, 137, 154
SHOW ENGINE INNODB STATUS

(see InnoDB monitor)
SHOW GLOBAL STATUS, 49, 334
SHOW SESSION STATUS, 334
START TRANSACTION READ ONLY,

96, 196
XA RECOVER, 86

SRID, see Spatial Reference System Identifier
Status variables

Innodb_row_lock_current_waits, 249,
284, 285

Innodb_row_lock_time, 249, 284, 285
Innodb_row_lock_time_avg, 249
Innodb_row_lock_time_max, 249, 250
Innodb_row_lock_waits, 249, 250,

284, 285
STONITH, see Shoot The Other Node In

The Head
sys schema

procedures
statement_performance_

analyzer(), 309

Index

376

views
innodb_lock_waits, 48, 67, 248, 253,

254, 285, 292, 293, 322
io_by_thread_by_latency, 333
io_global_by_file_by_bytes, 333
io_global_by_file_by_latency, 333
io_global_by_wait_by_bytes, 333
io_global_by_wait_by_latency, 333
metrics, 48, 77–81, 249, 259, 284,

303, 314, 322, 334
schema_index_statistics, 331
schema_table_lock_waits, 48, 233,

285, 292, 322
schema_table_statistics, 331
schema_table_statistics_with_

buffer, 331
schema_tables_with_full_table_

scans, 331
schema_unused_indexes, 332
session, 91–92, 111, 223, 224, 226,

309, 328
statement_analysis, 328
statements_with_errors_or_

warnings, 328

statements_with_full_table
_scans, 328

statements_with_runtimes_
in_95th_percentile, 329

statements_with_sorting, 329
statements_with_temp

_tables, 329

T, U, V, W, X, Y, Z
Transaction

age, 157–158
size, 157–158, 167, 170

Transaction isolation level
READ COMMITTED, 127,

162, 164, 196, 204, 213–217, 257,
275, 295

READ UNCOMMITTED, 217–218
REPEATABLE READ, 127, 128, 162,

163, 196, 207–213, 215, 217
SERIALIZABLE, 98, 127, 128, 151, 162,

204–210, 212, 213, 215
trx_sys mutex, see Performance Schema,

instruments, wait/synch/mutex/
innodb/trx_sys_mutex

sys schema (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	Why Are Locks Needed?
	Lock Levels
	Locks and Transactions
	Examples
	Prerequisites for the concurrency_book.generate Module
	Installing the concurrency_book.generate Module
	Getting Information
	Loading Test Data
	Executing a Workload

	Test Data: The world Schema
	Schema
	Installation

	Test Data: The sakila Schema
	Schema
	Installation

	Test Data: The employees Schema
	Schema
	Installation

	Summary

	Chapter 2: Monitoring Locks and Mutexes
	The Performance Schema
	Metadata and Table Locks
	Data Locks
	Synchronization Waits
	Statement and Error Tables

	The sys Schema
	Status Counters and InnoDB Metrics
	Querying the Data
	Configuring the InnoDB Metrics

	InnoDB Lock Monitor and Deadlock Logging
	InnoDB Mutexes and Semaphores
	Summary

	Chapter 3: Monitoring InnoDB Transactions
	Information Schema INNODB_TRX
	InnoDB Monitor
	INNODB_METRICS and sys.metrics
	Summary

	Chapter 4: Transactions in the Performance Schema
	Transaction Events and Their Statements
	Transaction Summary Tables
	Summary

	Chapter 5: Lock Access Levels
	Shared Locks
	Exclusive Locks
	Intention Locks
	Lock Compatibility
	Summary

	Chapter 6: High-Level Lock Types
	User-Level Locks
	Flush Locks
	Metadata Locks
	Explicit Table Locks
	Implicit Table Locks
	Backup Locks
	Log Locks
	Summary

	Chapter 7: InnoDB Locks
	Record Locks and Next-Key Locks
	Gap Locks
	Predicate and Page Locks
	Insert Intention Locks
	Auto-Increment Locks
	Mutexes and RW-Lock Semaphores
	Summary

	Chapter 8: Working with Lock Conflicts
	Contention-Aware Transaction Scheduling (CATS)
	InnoDB Data Lock Compatibility
	Metadata and Backup Lock Wait Timeouts
	InnoDB Lock Wait Timeouts
	Deadlocks
	InnoDB Mutex and Semaphore Waits
	Summary

	Chapter 9: Reducing Locking Issues
	Transaction Size and Age
	Indexes
	Record Access order
	Transaction Isolation Levels
	Configuration
	Resource Partitioning
	Disabling the InnoDB Adaptive Hash Index
	Reducing Priority of Metadata Write Locks

	Preemptive Locking
	Summary

	Chapter 10: Indexes and Foreign Keys
	Indexes
	Primary vs. Secondary Indexes
	Ascending vs. Descending Indexes
	Unique Indexes

	Foreign Keys
	DML Statement
	DDL Statement

	Summary

	Chapter 11: Transactions
	Transactions and ACID
	Atomicity
	Consistency
	Isolation
	Durability

	Impact of Transactions
	Locks
	Undo Logs

	Group Commit
	Summary

	Chapter 12: Transaction Isolation Levels
	Serializable
	Repeatable Read
	Read Committed
	Read Uncommitted
	Summary

	Chapter 13: Case Study: Flush Locks
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The Solution
	The Prevention
	Summary

	Chapter 14: Case Study: Metadata and Schema Locks
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The Solution
	The Prevention
	Summary

	Chapter 15: Case Study: Record-Level Locks
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The Solution
	The Prevention
	Summary

	Chapter 16: Case Study: Deadlocks
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The Solution
	The Prevention
	Summary

	Chapter 17: Case Study: Foreign Keys
	The Setup
	The Discussion
	Errors and High-Level Monitoring
	Lock Metrics
	Metadata Lock Contention
	InnoDB Lock Contention

	The Solution and Prevention
	Summary

	Chapter 18: Case Study: Semaphores
	The Symptoms
	The Cause
	The Setup
	The Investigation
	The InnoDB RW-Lock Metrics
	InnoDB Monitor and Mutex Monitor
	Determining the Workload

	The Solution and Prevention
	Disabling the Adaptive Hash Index
	Increase the Number of Hash Index Parts
	Other Solutions

	Summary

	Appendix A: References
	Tables and Views
	Lock Information
	Metadata Object Types
	Metadata Lock Types
	Transaction Information
	Statement Information
	Wait Information
	Table I/O Information
	File I/O Information
	Error Information
	Status Variables and InnoDB Metrics

	InnoDB Monitor Sections

	Appendix B: MySQL Shell Module
	Prerequisites
	Installation
	The help() and show() Methods
	Loading Test Data
	Executing a Workload
	Module Structure
	Library Files
	innodb_buffer_pool.py
	innodb_monitor.py
	innodb_mutex.py
	load.py
	log.py
	metrics.py
	query.py
	util.py
	workloads.py

	Workloads Directory

	Defining Workloads
	Global Keys
	Queries and Completions
	Investigations

	Summary

	Index

